OBJECTIVE: To explore the feasibility of reconstructing tissue engineered vessel in vitro. METHODS: Bovine endothelial cells were isolated from calf thoracic aorta by enzyme digestion methods and subcultured and purified. The endothelial cells of the 3rd to 7th passages were seeded into the inner surface of tubular scaffold material by polyglycolic acid(PGA) coated with cross-linked collagen, and cultured in vitro for 10 days using dynamic rotation culture technique. Scanning electron microscopy was used to analyse the morphological characteristics, and prostacyclin released by endothelial cells was measured by radioimmunoassay of 6-keto-prostaglandin F1 alpha. RESULTS: The VIII factor staining of cultured endothelial cells was positive. The endothelial cells adhered well on the inner surface of tubular scaffold material with confluent monolayer covering(91.2 +/- 1.5)%. The endothelialized model released prostacyclin at a rate of (4.6 +/- 0.5) micrograms/cm2.min. There was significant difference to control group (P lt; 0.05). CONCLUSION: The PGA coating with collagen is an ideal scaffold for endothelial cells, the coverage rate is increased through dynamic rotation culture technique. It will lay a good foundation for architecture of a laminated structure of tissue engineered vessel.
Citation: XIONG Meng,AI Yufeng,WANG Yang,et al.. RECONSTRUCTION OF TISSUE ENGINEERED VASCULAR MODEL IN VITRO. Chinese Journal of Reparative and Reconstructive Surgery, 2001, 15(2): 109-112. doi: Copy