1. |
|
2. |
CHANCE B, SCHOENER B, OSHINO R, et al. Oxidationreduction ratio studies of mitochondria in freezetrapped samples. NADH and flavoprotein fluorescence signals[J]. J Biol Chem,1979,254(11):4764-4771..
|
3. |
BLINOVA K, CARROLL S, BOSE S, et al. Distribution of mitochondrial NADH fluorescence lifetimes: steadystate kinetics of matrix NADH interactions[J]. Biochemistry,2005,44(7):2585-2594..
|
4. |
ENG J, LYNCH R M, BALABAN R S. Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes[J]. Biophys J,1989,55(4):621-630..
|
5. |
CHANCE B, THORELL B. Fluorescence measurements of mitochondrial pyridine nucleotide in aerobiosis and anaerobiosis[J]. Nature,1959,184:931-934..
|
6. |
BASSIENCAPSA V, FOURON J C, COMTE B, et al. Structural, functional and metabolic remodeling of rat left ventricular myocytes in normal and in sodiumsupplemented pregnancy[J]. Cardiovasc Res,2006,69(2):423-431..
|
7. |
CHORVAT D JR, CHORVATOVA A. Spectrally resolved timecorrelated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes[J]. Eur Biophys J,2006,36:73-83..
|
8. |
ANEBA S, CHENG Y, MATEASIK A, et al. Probing of cardiomyocyte metabolism by spectrally resolved lifetime detection of NAD(P)H fluorescence[J]. Comput Cardiol,2007,34:349-352..
|
9. |
VISHWASRAO H D, HEIKAL A A, KASISCHKE K A, et al. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy[J]. J Biol Chem,2005,280(26):25119-25126..
|
10. |
WAKITA M, NISHIMURA G, TAMURA M. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ[J]. J Biochem (Tokyo),1995,118(6):1151-1160..
|
11. |
BRAUTIGAM C A, CHUANG J L, TOMCHICK D R, et al. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of diseasecausing mutations[J]. J Mol Biol,2005,350(3):543-552..
|
12. |
ROMASHKO D N, MARBAN E, O’ROURKE B. Subcellular metabolic transients and mitochondrial redox waves in heart cells[J]. Proc Natl Acad Sci USA,1998,95(4):1618-1623..
|
13. |
CHORVAT D JR, BASSIENCAPSA V, CAGALINEC M, et al. Mitochondrial autofluorescence induced by visible light in single cardiac myocytes studied by spectrally resolved confocal microscopy[J]. Laser Physics,2004,14(2):220-230..
|
14. |
CHORVAT D JR, KIRCHNEROVA J, CAGALINEC M, et al. Spectral unmixing of flavin autofluorescence components in cardiac myocytes[J]. Biophys J,2005,89(6):L55-L57..
|
15. |
CHORVAT D, ELZWIEI F, BASSIENCAPSA V, et al. Assessment of lowIntensity fluorescence signals in living cardiac cells using timeresolved laser spectroscopy[J]. Comput Cardiol,2007,34:353-357..
|
16. |
SEKAR R B, PERIASAMY A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations[J]. J Cell Biol,2003,160(5):629-633..
|
17. |
CHENG Y, DAHDAH N, PORIER N, et al. Spectrally and timeresolved study of NADH autofluorescence in cardiac myocytes from human biopsies[M]. Proceedings of SPIE: the International Society for Optical Engineering,2007:6771(Advanced Photon Counting Techniques II): 677104-1-67710413..
|