1. |
Prat A, Parker JS, Karginnova O, et al. Phenotypic and molecular characterization of theclaudin-low intrinsic subtype of breast cancer[J]. Breast Cancer Res, 2010, 12(5):R68.
|
2. |
Brenton JD, Carey LA, Ahmed AA, et al. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?[J]. J Clin Oncol, 2005, 23(29): 7350-7360.
|
3. |
Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decate[J]. J Pathol, 2010, 220(2):263-280.
|
4. |
Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer[J]. J Clin Oncol, 2008, 26(8):1275-1281.
|
5. |
Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer:clinical features and patterns of recurrence[J]. Clin Cancer Res, 2007, 13(15 Pt 1):4429-4434.
|
6. |
Ponzo MG, Lesurf R, Petkiewicz S, et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer[J]. Proc Natl Acad Sci USA, 2009, 106(31):12903-12908.
|
7. |
Gonzalez-Angulo AM, Chen H, Karuturi MS, et al. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer[J]. Cancer, 2013, 19(1):7-15.
|
8. |
Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC[J]. Cancer Cell, 2010, 17(1):77-88.
|
9. |
Baselga J, Albanell J, Ruiz A, et al. PhaseⅡand tumor pharma-codynamic study of gefitinib in patients with advanced breast cancer[J]. J Clin Oncol, 2005, 23(23):5323-5333.
|
10. |
Mueller KL, Madden JM, Zoratti GL, et al. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptortyrosine kinase inhibitor resistance in triple-negative breast cancersthrough paracrine activation of Met[J]. Breast Cancer Res, 2012,.
|
11. |
Accornero P, Miretti S, Bersani F, et al. Met receptor acts uniq-uely for survival and morphogenesis of EGFR-dependent normal mammary epithelial and cancer cells[J]. PLoS One, 2012, 7(9):e44982.
|
12. |
Gastaldi S, Sassi F, Accornero P, et al. Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors:implications for basal-like breast cancer[J]. Oncogene, 2012, 32(11):1428-1440.
|
13. |
Shojaei F, Lee JH, Simmons BH, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors[J]. Cancer Res, 2010, 70(24):10090-10100.
|
14. |
(4): R104.
|
15. |
Gallahan D, Kozak C, Callahan R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome17[J] . J Virol, 1987, 61(1):218-220.
|
16. |
Xu K, Usary J, Kousis PC, et al. Lunatic fringe deficiency coop-erates with the Met/Caveolin gene amplicon to induce basal-like breast cancer[J]. Cancer Cell, 2012, 21(5):626-641.
|
17. |
Burgess T, Coxon A, Meyer S, et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potentialagainst hepatocyte growth factor/c-Met-dependent human tumors[J]. Cancer Res, 2006, 66(3): 1721-1729.
|
18. |
Peters S, Adjei AA. MET: a promising anticancer therapeutictarget[J]. Nat Rev Clin Oncol, 2012, 9(6):314-326.
|
19. |
US National Library of Medicine. Clinical Trials. gov[online],2012, http://clinicaltrials. gov/show/NCT01186991.
|
20. |
Munshi N, Jeay S, Li Y, et al. ARQ197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antit-umor activity[J]. Mol Cancer Ther, 2010, 9(6):1544-1553.
|
21. |
US National Library of Medicine. Clinical Trials. gov[online], 2012, http://clinicaltrials. gov/ct2/show/NCT01147484.
|
22. |
Wu ZS, Wu Q, Wang CQ, et al. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoproteinc-Met[J]. Cancer, 2011, 117(13):2842-2852.
|