1. |
Olson HE, Demarest S, Pestana-Knight E, et al. Epileptic spasms in CDKL5 deficiency disorder: delayed treatment and poor response to first-line therapies. Epilepsia, 2023, 64(7): 1821-1832.
|
2. |
Kotulska K, Kwiatkowski DJ, Curatolo P, et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Annals of Neurology, 2021, 89(2): 304-314.
|
3. |
Perucca E, Brodie MJ, Kwan P, et al. 30 years of second-generation antiseizure medications: impact and future perspectives. The Lancet. Neurology, 2020, 19(6): 544-556.
|
4. |
Grinspan ZM, Patel AD, Shellhaas RA, et al. Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system. Epilepsia, 2021, 62(1): 198-216.
|
5. |
Carvill GL, Matheny T, Hesselberth J, et al. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics:The Journal of the American Society for Experimental NeuroTherapeutics, 2021, 18(3): 1500-1514.
|
6. |
Li M, Jancovski N, Jafar-Nejad P, et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. The Journal of Clinical Investigation, 2021, 131(23): e152079.
|
7. |
Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Science Translational Medicine, 2020, 12(558): eaaz6100.
|
8. |
Brown JR, Ye H, Bronson RT, et al. A defect in nurturing in mice lacking the immediate early gene fosB. Cell, 1996, 86(2): 297-309.
|
9. |
Qiu Y, O’Neill N, Maffei B, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science (New York, N. Y.), 2022, 378(6619): 523-532.
|
10. |
Colasante G, Qiu Y, Massimino L, et al. In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain, 2020, 143(3): 891-905.
|
11. |
Chen QL, Xia L, Zhong SP, et al. Bioinformatic analysis identifies key transcriptome signatures in temporal lobe epilepsy. CNS Neuroscience & Therapeutics, 2020, 26(12): 1266-1277.
|
12. |
Huang Y, Zhao F, Wang L, et al. Increased expression of histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patients and rat models. Synapse (New York, N. Y. ), 2012, 66(2): 151-159.
|
13. |
Hauser R M, Henshall D C, Lubin F D. The epigenetics of epilepsy and its progression. The Neuroscientist, 2018, 24(2): 186-200.
|
14. |
Kobow K, Kaspi A, Harikrishnan K N, et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathologica, 2013, 126(5): 741-756.
|
15. |
Martins-Ferreira R, Leal B, Chaves J, et al. Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes. Progress in Neurobiology, 2022, 209: 102207.
|
16. |
Berger TC, Taubøll E, Heuser K. The potential role of DNA methylation as preventive treatment target of epileptogenesis. Frontiers in Cellular Neuroscience, 2022, 16: 931356.
|
17. |
Korotkov A, Mills JD, Gorter JA, et al. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Scientific Reports, 2017, 7(1): 11592.
|
18. |
Hashemian F, Ghafouri-Fard S, Arsang-Jang S, et al. Epilepsy is associated with dysregulation of long non-coding rnas in the peripheral blood. Frontiers in Molecular Biosciences, 2019, 6: 113.
|
19. |
Berto S, Fontenot MR, Seger S, et al. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nature Neuroscience, 2021, 24(4): 554-564.
|
20. |
Zhu B, Eom J, Hunt RF. Transplanted interneurons improve memory precision after traumatic brain injury. Nature Communications, 2019, 10(1): 5156.
|
21. |
Hunt RF, Girskis KM, Rubenstein JL, et al. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nature Neuroscience, 2013, 16(6): 692-697.
|
22. |
Frankowski JC, Tierno A, Pavani S, et al. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nature Communications, 2022, 13(1): 3417.
|
23. |
Allison T, Langerman J, Sabri S, et al. Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Reports, 2021, 16(10): 2548-2564.
|
24. |
Bershteyn M, Bröer S, Parekh M, et al. Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell, 2023, 30(10): 1331-1350. e11.
|
25. |
Casalia ML, Li T, Ramsay H, et al. Interneuron origins in the embryonic porcine medial ganglionic eminence. The Journal of Neuroscience, 2021, 41(14): 3105-3119.
|
26. |
Gregg NM, Pal Attia T, Nasseri M, et al. Seizure occurrence is linked to multiday cycles in diverse physiological signals. Epilepsia, 2023, 64(6): 1627-1639.
|
27. |
Anderson DN, Charlebois CM, Smith EH, et al. Closed-loop stimulation in periods with less epileptiform activity drives improved epilepsy outcomes. Brain, 2023: awad343.
|
28. |
Khambhati AN, Shafi A, Rao VR, et al. Long-term brain network reorganization predicts responsive neurostimulation outcomes for focal epilepsy. Science Translational Medicine, 2021, 13(608): eabf6588.
|
29. |
Scheid BH, Bernabei JM, Khambhati AN, et al. Intracranial electroencephalographic biomarker predicts effective responsive neurostimulation for epilepsy prior to treatment. Epilepsia, 2022, 63(3): 652-662.
|
30. |
Fan JM, Lee AT, Kudo K, et al. Network connectivity predicts effectiveness of responsive neurostimulation in focal epilepsy. Brain Communications, 2022, 4(3): fcac104.
|
31. |
Warren AEL, Dalic LJ, Bulluss KJ, et al. The optimal target and connectivity for deep brain stimulation in lennox-gastaut syndrome. Annals of Neurology, 2022, 92(1): 61-74.
|
32. |
Aiello G, Ledergerber D, Dubcek T, et al. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy. Brain, 2023, 146(11): 4717-4735.
|
33. |
Charlebois CM, Anderson DN, Johnson KA, et al. Patient-specific structural connectivity informs outcomes of responsive neurostimulation for temporal lobe epilepsy. Epilepsia, 2022, 63(8): 2037-2055.
|
34. |
Mithani K, Mikhail M, Morgan BR, et al. Connectomic Profiling Identifies Responders to Vagus Nerve Stimulation. Annals of Neurology, 2019, 86(5): 743-753.
|
35. |
Middlebrooks EH, He X, Grewal SS, et al. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Research, 2022, 182: 106916.
|
36. |
Piper RJ, Richardson RM, Worrell G, et al. Towards network-guided neuromodulation for epilepsy. Brain:A Journal of Neurology, 2022, 145(10): 3347-3362.
|
37. |
Schaper FLWVJ, Nordberg J, Cohen AL, et al. Mapping lesion-related epilepsy to a human brain network. JAMA Neurology, 2023, 80(9): 891-902.
|