1. |
Arancibia SA, Beltrán CJ, Aguirre IM, et al. Toll-like receptors are key participants in innate immune responses[J]. Biol Res, 2007, 40(2):97-112.
|
2. |
Sheedy FJ, O’neill LA. The troll in toll:mal and tram as bridges for TLR2 and TLR4 signaling[J]. J Leukoc Biol, 2007, 82(2):196-203.
|
3. |
方丽娟, 孟民杰. 髓样分化因子88研究进展[J]. 广东药学院学报, 2011, 27(2):215-217.
|
4. |
Li X, Qin J. Modulation of toll-interleukin 1 receptor mediated signaling[J]. J Mol Med, 2005, 83(4):258-266.
|
5. |
Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rsin host defense:natural insights from evolutionary, epidemiological,and clinical genetics[J]. Annu Rev Immunol, 2011, 29:447-491.
|
6. |
Boraschi D, Tagliabue A. The interleukin-1 receptor family[J]. Vitam Horm, 2006, 74:229-254.
|
7. |
Brown J, Wang H, Hajishengallis GN, et al. TLR-signaling networks:an integration of adaptor molecules, kinases, and cross-talk[J]. J Dent Res, 2011, 90(4):417-427.
|
8. |
Mitchell JA, Paul-Clark MJ, Clarke GW, et al. Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease[J]. J Endocrinol, 2007, 193(3):323-330.
|
9. |
Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network[J]. Mol Syst Biol, 2006, 2:2006.
|
10. |
Takeuchi O, Akira S. MyD88 as a bottle neck in Toll/IL-1 signaling[J]. Curr Top Microbiol Immunol, 2002, 270:155-167.
|
11. |
production from regulatory CD11b+/Gr-1high cells suppressesdevelopment of acute cerulein pancreatitis in mice[J]. Immunol Lett, 2012, 148(2):172-177.
|
12. |
Jin B, Sun T, Yu XH, et al. The effects of TLR activation on T-celldevelopment and differentiation[J]. Clin Dev Immunol, 2012, 2012:836485.
|
13. |
Kawai T, Akira S. TLR signaling[J]. Semin Immunol, 2007, 19(1):24-32.
|
14. |
An H, Qian C, Cao X. Regulation of toll-like receptor signaling in the innate immunity[J]. Sci China Life Sci, 2010, 53(1):34-43.
|
15. |
Taniguchi Y, Yoshioka N, Nakata K, et al. Mechanism for maintaining homeostasis in the immune system of the intestine[J]. Anticancer Res, 2009, 29(11):4855-4860.
|
16. |
Frantz AL, Rogier EW, Weber CR, et al. Targeted deletion ofMyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymericimmunoglobulin receptor, mucin-2, and antibacterial peptides[J].Mucosal Immunol, 2012, 5(5):501-512.
|
17. |
Hoshi N, Schenten D, Nish SA, et al. MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient mice[J]. Nat Commun, 2012, 3:1120.
|
18. |
Ling HP, Li W, Zhou ML, et al. Expression of intestinal myeloid differentiation primary response protein 88 (MyD88) following experimental traumatic brain injury in a mouse model[J]. J Surg Res, 2013, 179(1):e227-e234.
|
19. |
Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88[J]. Science, 2007, 317(5834):124-127.
|
20. |
Li W, Liu HD, You WC, et al. Enhanced cortical expression of myeloid differentiation primary response protein 88(MyD88) inpatients with traumatic brain injury[J]. J Surg Res, 2013, 180 (1):133-139.
|
21. |
Babcock AA, Toft-Hansen H, Owens T. Signaling through MyD88 regulates leukocyte recruitment after brain injury[J]. J Immunol, 2008, 181(9):6481-6490.
|
22. |
Mao SS, Hua R, Zhao XP, et al. Exogenous administration of PACAP alleviates traumatic brain injury in rats through a mechanism involving the TLR4/MyD88/NF-κB pathway[J]. J Neurotrauma, 2012, 29(10):1941-1959.
|
23. |
Braun TP, Grossberg AJ, Veleva-Rotse BO, et al. Expression of myeloid differentiation factor 88 in neurons is not requisite for the induction of sickness behavior by interleukin-1β[J]. J Neuroinflammation, 2012, 9:229.
|
24. |
Wang X, Stridh L, Li W, et al. Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner[J]. J Immunol, 2009, 183(11):7471-7477.
|
25. |
Feng Y, Zou L, Zhang M, et al. MyD88 and trif signaling play distinct roles in cardiac dysfunction and mortality during endotoxin shock and polymicrobial sepsis[J]. Anesthesiology, 2011, 115(3):555-567.
|
26. |
Singh MV, Swaminathan PD, Luczak ED, et al. MyD88 mediatedinflammatory signaling leads to CaMKⅡ oxidation, cardiac hyper-trophy and death after myocardial infarction[J]. J Mol Cell Cardiol,.
|
27. |
Koike Y, Kanai T, Saeki K, et al. MyD88-dependent interleukin-.
|
28. |
Huang X, Yang Y. Targeting the TLR9-MyD88 pathway in the regulation of adaptive immune responses[J]. Expert Opin Ther Targets, 2010, 14(8):787-796.
|
29. |
Ve T, Gay NJ, Mansell A, et al. Adaptors in toll-like receptor signaling and their potential as therapeutic targets[J]. Curr Drug Targets, 2012, 13(11):1360-1374.
|
30. |
梁小明, 陈昌辉. 髓样分化因子88在Toll样受体信号通路中的作用及临床意义[J]. 实用儿科临床杂志, 2012, 27(15):1197-1200.
|
31. |
Lucas K, Maes M. Role of the toll like receptor (TLR) radicalcycle in chronic inflammation:possible treatments targeting the TLR4 pathway[J]. Mol Neurobiol, 2013. [Epub ahead of print].
|
32. |
Fekonja O, Avbelj M, Jerala R. Suppression of TLR signaling by targeting TIR domain-containing proteins[J]. Curr Protein Pept Sci, 2012, 13(8):776-788.
|
33. |
Henderson C, Goldbach-Mansky R. Monogenic IL-1 mediated autoinflammatory and immunodeficiency syndromes:finding the right balance in response to danger signals[J]. Clin Immunol, 2010, 135(2):210-222.
|
34. |
Zhu J, Mohan C. Toll-like receptor signaling pathways-therapeuticopportunities[J]. Mediators Inflamm, 2010, 2010:781235.
|
35. |
Netea MG, Wijmenga C, O’neill LA. Genetic variation in toll-like receptors and disease susceptibility[J]. Nat Immunol, 2012, 13(6):535-542.
|
36. |
Zambirinis CP, Miller G. Signaling via MyD88 in the pancreatic tumor microenvironment:a double-edged sword[J]. Oncoimmunology, 2013, 2(1):e22567.
|
37. |
, 52(5):1135-1144.
|