Objective To explore the relationship between central venous-to-arterial carbon dioxide difference/arterial-to-venous oxygen difference ration [P(cv-a)CO2/C(a-cv)O2] and arterial lactate in patients with sepsis. Methods A retrospective analysis was carried on 36 septic patients who were admitted to the Intensive Care Unit of Nanjng Drum-tower Hospital affiliated to Medical School of Nanjing University from May 2013 to November 2013. Cardiac index was measured by transpulmonary thermodilution. At the same time, femoral artery and central venous blood were collected to measure the value of arterial lactate and central venous oxygen saturation (ScvO2) by blood gas analysis and calculate central venous-to-arterial carbon dioxide difference [P(cv-a)CO2], arterial-to-venous oxygen difference [C(a-cv)O2], and their ration [P(cv-a)CO2/C(a-cv)O2], oxygen delivery (DO2) and oxygen consumption (VO2). The subjects were divided intoahyperlactatemia group (≥2 mmol/L) andanormal lactate group (< 2 mmol/L) according to arterial lactate value. P(cv-a)CO2/C(a-cv)O2 and other oxygen metabolism parameters were compared between two groups. Receiver operating characteristic (ROC) curve was used to evaluate the accuracy of P(cv-a)CO2/C(a-cv)O2 and other parameters for diagnosis of hyperlactatemia. Results A total of 36 patients with 119 data were collected. Compared with the normal lactate group, P(cv-a)CO2/C(a-cv)O2 was significantly higher [(1.38±0.76)mm Hg/mL vs. (2.31±1.01) mm Hg/mL, P < 0.01], ScvO2, DO2 and VO2 were significantly lower in the hyperlactatemia group [ScvO2: (74.26±9.13)% vs. (70.29±9.72)%; DO2: (505.52±208.39) mL/(min·m2) vs. (429.98±173.63) mL/(min·m2)]; VO2: (129.01±54.94) mL/(min·m2) vs. (109.99±38.79) mL/(min·m2), P < 0.05]. P(cv-a)CO2 had no significant difference between two groups [(5.76±3.70) mm Hg vs. (6.59±3.70) mm Hg, P > 0.05]. P(cv-a)CO2/C(a-cv)O2 was positively correlated with lactate (r=0.646, P < 0.01). ScvO2 was negatively correlated with lactate (r=-0.277, P < 0.01). DO2 and VO2 had no significant correlation with lactate (P > 0.05). The area under ROC curve (AUC) of P(cv-a)CO2 /C(a-cv)O2 for diagnosis of hyperlactatemia was 0.820, with 95% confidence interval (95%CI) of 0.715 - 0.925(P < 0.001); The AUC of ScvO2 was 0.622, with 95%CI of 0.520 - 0.724(P=0.025). Conclusion Compared with the traditional oxygen metabolism parameters, P(cv-a)CO2/C(a-cv)O2 can accurately diagnose hyperlactatemia, and isareliable parameter to reflect oxygen metabolism in patients with sepsis.
Objective To analyze the relationship between end-tidal carbon dioxide partial pressure (PETCO2) and arterial CO2 pressure (PaCO2) in invasive ventilated patients. Methods An observational study was conducted in adult patients admitted to Intensive Care Unit (ICU) between June 2016 and March 2017. Samples were immediately analyzed for PaCO2 using a blood gas analyzer. At the same time the arterial to end-tidal CO2 gradient was determined. Relationship in different mechanical ventilation modes, disease categories and PaO2/FiO2 were analyzed in this study. Results A total of 225 arterial blood gases were obtained from the 104 patients. In each of these modes the PETCO2 was generally lower than the PaCO2. There was a positive correlation between PaCO2 and PETCO2 regardless of different mode (r=0.70, Y=11.08+0.77X). A positive correlation was found in SIMV and SPONT modes, but not in A/C mode. The relationship between PaCO2 and PETCO2 in COPD, trauma, cerebrovascular disease and severe pneumonia patients shown a positive correlation (r value was 0.76, 0.64, 0.53, and 0.56, respectively). There was a significant correlation whether PaCO2/FiO2<200 mm Hg (r=0.69, P<0.001) or ≥200 mm Hg (r=0.71, P<0.001). Conclusions The results of this study show that PETCO2 monitoring accurately reflects PaCO2 during mechanical ventilation. A positive correlation is found in different ventilation modes, regardless of disease categories or PaCO2/FiO2.
ObjectiveTo analyze the effect of different nebulization methods in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) requiring non-invasive ventilators (NIV). MethodsOne hundred and two patients with AECOPD were selected according to the standard, and randomly divided into a control group, a trial group I, and a trial group II according to the random number table. The patients in the control group received NIV intermittent oxygen-driven nebulization; the patients in the trial group I received NIV simultaneous oxygen-driven nebulization; and the patients in the trial group II received NIV simultaneous air-driven nebulization. The dynamic fluctuations of transcutaneous partial pressure of carbon dioxide (PtCO2), arterial blood gas indexes (PaCO2, PaO2, pH), vital signs and pulse oxygen saturation (SpO2) fluctuations were compared. ResultsPtCO2 at 15min of nebulization in the trial group II were lower than the other groups (P<0.05). PtCO2 at 15min of nebulization was higher than the other time points in the control group (P<0.05); there was no statistical difference of PtCO2 at different time points in the trial group I (P>0.05); PtCO2 gradually decreased with time in the trial group II (P<0.05). The difference before and after nebulization of PtCO2 (dPtCO2) was larger in trial group II than the other groups (P<0.05). PtCO2 at 0min and 5min after the end of nebulization in trial group II were lower than the other groups (P<0.05); there were no statistical differences of PtCO2 at 10min and 15min after the end of nebulization among three groups (P>0.05). There were statistical differences of the PtCO2 at each time point in the control group except for the PtCO2 at 10 min and 15min after the end of nebulization, all of which decreased with time; PtCO2 at each time points of nebulization decreased with time in the trial group I (P<0.05). PtCO2 only at 5min after the end of nebulization was lower than that at 0min after the end of nebulization in trial group II (P< 0.05), there were no statistical differences in other times (P>0.05). PaCO2, pH at the 4th day of treatment was lower than the pre-treatment in the control group (P<0.01); there were statistical differences of PaCO2 between the pre-treatment and the rest time points in the trial group I and group II (P<0.05). The number of abnormal fluctuations in vital signs and SpO2 during nebulization in three groups was not statistically different (P>0.05). ConclusionsThree groups can achieve good therapeutic effects. NIV intermittent oxygen-driven nebulization can make PtCO2 rise during nebulization; NIV simultaneous oxygen-driven nebulization can make PtCO2 remain stable during nebulization; NIV simultaneous air-driven nebulization can make PtCO2 fall during nebulization.