west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "人工智能" 208 results
  • Diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps: a meta-analysis

    Objective To systematically evaluate the diagnostic value of artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps. Methods Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, China National Knowledge Infrastructure, Chongqing VIP and Wanfang databases were searched. The diagnostic trials of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps were comprehensively searched. The search time limit was from January 1, 2000 to October 31, 2022. The included studies were evaluated according to the Quality Assessment of Diagnostic Accuracy Studies-2, and the data were meta-analysed with RevMan 5.3, Meta-Disc 1.4 and Stata 13.0 statistical softwares. Results Finally, 11 articles were included, including 2178 patients. Meta-analysis results of the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system for colorectal adenomatous polyps showed that the pooled sensitivity was 0.91, the pooled specificity was 0.88, the pooled positive likelihood ratio was 7.41, the pooled negative likelihood ratio was 0.10, the pooled diagnostic odds ratio was 76.45, and the area under the summary receiver operating characteristic curve was 0.957. Among them, 5 articles reported the diagnosis of small adenomatous polyps (diameter <5 mm) by the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system. The results showed that the pooled sensitivity and the pooled specificity were 0.93 and 0.91, respectively, and the area under the summary receiver operating characteristic curve was 0.971. Five articles reported the accuracy of endoscopic diagnosis for adenomatous polyps of those with insufficient experience. The results showed that the pooled sensitivity and the pooled specificity were 0.84 and 0.76, respectively. The area under the summary receiver operating characteristic curve was 0.848. Compared with the artificial intelligence assisted narrow-band imaging endoscopy diagnostic system, the difference was statistically significant (Z=1.979, P=0.048). Conclusion The artificial intelligence assisted narrow-band imaging endoscopy diagnostic system has a high diagnostic accuracy, which can significantly improve the diagnostic accuracy for colorectal adenomatous polyps of those with insufficient endoscopic experience, and can effectively compensate for the adverse impact of their lack of endoscopic experience.

    Release date: Export PDF Favorites Scan
  • Research progress on artificial intelligence in precise pathological diagnosis of lung cancer

    The incidence of lung cancer has increased significantly during the past decades. Pathology is the gold standard for diagnosis and the corresponding treatment measures selection of lung cancer. In recent years, with the development of artificial intelligence and digital pathology, the researches of pathological image analysis have achieved remarkable progresses in lung cancer. In this review, we will introduce the research progress on artificial intelligence in pathological classification, mutation genes and prognosis of lung cancer. Artificial intelligence is expected to further accelerate the pace of precision pathology.

    Release date:2021-06-07 02:03 Export PDF Favorites Scan
  • 利用互联网、大数据与人工智能促进胸外科发展

    Release date:2018-03-28 03:22 Export PDF Favorites Scan
  • Diagnostic value of artificial intelligence-assisted diagnostic system for pulmonary cancer based on CT images: A systematic review and meta-analysis of 4 771 patients

    ObjectiveTo evaluate the diagnostic value of artificial intelligence (AI)-assisted diagnostic system for pulmonary cancer based on CT images.MethodsDatabases including PubMed, The Cochrane Library, EMbase, CNKI, WanFang Data and Chinese BioMedical Literature Database (CBM) were electronically searched to collect relevant studies on AI-assisted diagnostic system in the diagnosis of pulmonary cancer from 2010 to 2019. The eligible studies were selected according to inclusion and exclusion criteria, and the quality of included studies was assessed and the special information was identified. Then, meta-analysis was performed using RevMan 5.3, Stata 12.0 and SAS 9.4 softwares. The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio were pooled and the summary receiver operating characteristic (SROC) curve was drawn. Meta-regression analysis was used to explore the sources of heterogeneity.ResultsTotally 18 studies were included with 4 771 patients. Random effect model was used for the analysis due to the heterogeneity among studies. The results of meta-analysis showed that the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnosis odds ratio and area under the SROC curve were 0.87 [95%CI (0.84, 0.90)], 0.89 [95%CI (0.84, 0.92)], 7.70 [95%CI (5.32, 11.15)], 0.14 [95%CI (0.11, 0.19)], 53.54 [95%CI (30.68, 93.42)] and 0.94 [95%CI (0.91, 0.95)], respectively.ConclusionAI-assisted diagnostic system based on CT images has high diagnostic value for pulmonary cancer, and thus it is worthy of clinical application. However, due to the limited quality and quantity of included studies, above results should be validated by more studies.

    Release date:2021-10-28 04:13 Export PDF Favorites Scan
  • Design and implementation of clinical trials on artificial intelligence medical devices: challenges and strategies

    Compared with traditional medical devices, artificial intelligence medical devices face greater challenges in the process of clinical trials due to their related characteristics of artificial intelligence technology. This paper focused on the challenges and risks in each stage of clinical trials on artificial intelligence medical devices for assisted diagnosis, and put forward corresponding coping strategies, with the aim to provide references for the performance of high-quality clinical trials on artificial intelligence medical devices and shorten the research period in China.

    Release date:2023-01-16 02:58 Export PDF Favorites Scan
  • Application of artificial intelligence phonetic system in postoperative follow-up of day surgery patients

    ObjectiveTo explore the application of artificial intelligence in postoperative follow-up of day surgery patients, so as to establish an intelligent medical framework, promote the intelligent process of hospitals, and improve the management level of day surgery.MethodsThe artificial intelligence phonetic system was carried out by the Day Surgery Center, Renji Hospital, Shanghai Jiaotong University School of Medicine on June 1st, 2018. Through the system, the artificial intelligence voice system based on speech and semantic recognition technology was adopted to connect the data of the information center in the hospital to carry out postoperative follow-up of day surgery patients. We selected the 2 245 patients followed up by the artificial intelligence phonetic system from June 1st to November 30th 2018 (the AI follow-up group) and the 2 576 patients followed up by the traditional manual method from January 2nd to May 31st 2018 (the manual follow-up group), to compare the telephone connection rate, information collection rate, and call duration between them.ResultsThere was no statistically significant difference in telephone connection rate (85.70% vs. 86.68%) or information collection rate (98.86% vs. 98.48%) between the AI follow-up group and the manual follow-up group (P>0.05); but there was a statistically significant difference in call duration between the AI follow-up group and the manual follow-up group [(165.48±43.28) vs. (135.37±36.31) seconds, P<0.05], and the AI follow-up group had a longer call duration.ConclusionsThe application of artificial intelligence phonetic system in surgery has a good performance in call connection rate and information collection integrity. It plays an active role in improving efficiency, extending medical services and strengthening medical safety in the management of day surgery.

    Release date:2019-02-21 03:19 Export PDF Favorites Scan
  • Accuracy of endoscopy-based artificial intelligence-assisted diagnostic system in the diagnosis of early esophageal cancer: A systematic review and meta-analysis

    Objective To systematically evaluate the accuracy of endoscopy-based artificial intelligence (AI)-assisted diagnostic systems in the diagnosis of early-stage esophageal cancer and provide a scientific basis for its diagnostic value. MethodsPubMed, EMbase, The Cochrane Library, Web of Science, Wanfang database, VIP database and CNKI database were searched by computer to search for the relevant literature about endoscopy-based AI-assisted diagnostic systems for the diagnosis of early esophageal cancer from inception to March 2022. The QUADAS-2 was used for quality evaluation of included studies. Meta-analysis of the literature was carried out using Stata 16, Meta-Disc 1.4 and RevMan 5.4 softwares. A bivariate mixed effects regression model was utilized to calculate the combined diagnostic efficacy of the AI-assisted system and meta-regression analysis was conducted to explore the sources of heterogeneity. ResultsA total of 17 articles were included, which consisted of 13 retrospective cohort studies and 4 prospective cohort studies. The results of the quality evaluation using QUADAS-2 showed that all included literature was of high quality. The obtained meta-analysis results revealed that the AI-assisted system in the diagnosis of esophageal cancer presented a combined sensitivity of 0.94 (95%CI 0.91 to 0.96), a specificity of 0.85 (95%CI 0.74 to 0.92), a positive likelihood ratio of 6.28 (95%CI 3.48 to 11.33), a negative likelihood ratio of 0.07 (95%CI 0.05 to 0.11), a diagnostic odds ratio of 89 (95%CI 38 to 208) and an area under the curve of 0.96 (95%CI 0.94 to 0.98). ConclusionThe AI-assisted diagnostic system has a high diagnostic value for early stage esophageal cancer. However, most of the included studies were retrospective. Therefore, further high-quality prospective studies are needed for validation.

    Release date:2023-08-31 05:57 Export PDF Favorites Scan
  • Applications of artificial intelligence in the diagnosis of eye diseases

    Ophthalmic imaging examination is the main basis for early screening, evaluation and diagnosis of eye diseases. In recent years, with the improvement of computer data analysis ability, the deepening of new algorithm research and the popularization of big data platform, artificial intelligence (AI) technology has developed rapidly and become a hot topic in the field of medical assistant diagnosis. The advantage of AI is accurate and efficient, which has great application value in processing image-related data. The application of AI not only helps to promote the development of AI research in ophthalmology, but also helps to establish a new medical service model for ophthalmic diagnosis and promote the process of prevention and treatment of blindness. Future research of ophthalmic AI should use multi-modal imaging data comprehensively to diagnose complex eye diseases, integrate standardized and high-quality data resources, and improve the performance of algorithms.

    Release date:2019-11-19 09:24 Export PDF Favorites Scan
  • Automatic modeling of the knee joint based on artificial intelligence

    Objective To investigate an artificial intelligence (AI) automatic segmentation and modeling method for knee joints, aiming to improve the efficiency of knee joint modeling. Methods Knee CT images of 3 volunteers were randomly selected. AI automatic segmentation and manual segmentation of images and modeling were performed in Mimics software. The AI-automated modeling time was recorded. The anatomical landmarks of the distal femur and proximal tibia were selected with reference to previous literature, and the indexes related to the surgical design were calculated. Pearson correlation coefficient (r) was used to judge the correlation of the modeling results of the two methods; the consistency of the modeling results of the two methods were analyzed by DICE coefficient. Results The three-dimensional model of the knee joint was successfully constructed by both automatic modeling and manual modeling. The time required for AI to reconstruct each knee model was 10.45, 9.50, and 10.20 minutes, respectively, which was shorter than the manual modeling [(64.73±17.07) minutes] in the previous literature. Pearson correlation analysis showed that there was a strong correlation between the models generated by manual and automatic segmentation (r=0.999, P<0.001). The DICE coefficients of the 3 knee models were 0.990, 0.996, and 0.944 for the femur and 0.943, 0.978, and 0.981 for the tibia, respectively, verifying a high degree of consistency between automatic modeling and manual modeling. Conclusion The AI segmentation method in Mimics software can be used to quickly reconstruct a valid knee model.

    Release date:2023-03-13 08:33 Export PDF Favorites Scan
  • Study on the accuracy of automatic segmentation of knee CT images based on deep learning

    Objective To develop a neural network architecture based on deep learning to assist knee CT images automatic segmentation, and validate its accuracy. Methods A knee CT scans database was established, and the bony structure was manually annotated. A deep learning neural network architecture was developed independently, and the labeled database was used to train and test the neural network. Metrics of Dice coefficient, average surface distance (ASD), and Hausdorff distance (HD) were calculated to evaluate the accuracy of the neural network. The time of automatic segmentation and manual segmentation was compared. Five orthopedic experts were invited to score the automatic and manual segmentation results using Likert scale and the scores of the two methods were compared. Results The automatic segmentation achieved a high accuracy. The Dice coefficient, ASD, and HD of the femur were 0.953±0.037, (0.076±0.048) mm, and (3.101±0.726) mm, respectively; and those of the tibia were 0.950±0.092, (0.083±0.101) mm, and (2.984±0.740) mm, respectively. The time of automatic segmentation was significantly shorter than that of manual segmentation [(2.46±0.45) minutes vs. (64.73±17.07) minutes; t=36.474, P<0.001). The clinical scores of the femur were 4.3±0.3 in the automatic segmentation group and 4.4±0.2 in the manual segmentation group, and the scores of the tibia were 4.5±0.2 and 4.5±0.3, respectively. There was no significant difference between the two groups (t=1.753, P=0.085; t=0.318, P=0.752). Conclusion The automatic segmentation of knee CT images based on deep learning has high accuracy and can achieve rapid segmentation and three-dimensional reconstruction. This method will promote the development of new technology-assisted techniques in total knee arthroplasty.

    Release date:2022-06-08 10:32 Export PDF Favorites Scan
21 pages Previous 1 2 3 ... 21 Next

Format

Content