目的 从法医学角度探讨儿科医疗纠纷案件特点及成因。 方法 对四川华西法医学鉴定中心2002 年1月-2011年12月受理的184例儿童死亡并进行尸检的儿科医疗纠纷案件的法医学鉴定资料进行回顾性研究。 结果 儿科医疗纠纷呈逐年升高趋势,年龄以新生儿为主,死因以呼吸系统疾病为主;临床-尸检符合率低(55.23%),医疗过错率高(60.47%),且两者呈负相关。 结论 儿科医疗纠纷临床-尸检符合率比所有年龄段人群低,医疗过错率比所有年龄段人群高,且呈现出临床-尸检诊断符合率越低,医疗过错率越高的特征。
Objectives To detect expressions of heat shock protein 70 (HSP70) and glial fibrillary acidic protein (GFAP) , and to estimate the post-injury interval after concussion of brain via the ratios of percentage of HSP70/GFAP-positive cells. Methods We established a brain concussion model of rat. Tissue levels of HSP70 and GFAP were determined by immunohistochemical staining at different time points after injury. Finally, the relationship between the ratio of percentage of HSP70/GFAP-positive cells and the post-injury interval was measured. Results The ratio of percentage of positive cells (increased from 7.15 to 11.73) and the percentage of HSP70-positive cells (P<0.05, compared with control group) increased, and the percentage of GFAP-positive cells did not change remarkably (P<0.05, compared with control group); the post-injury interval was between 0.5 hour and 3 hours. High ratio (>6.66) and high percentage of HSP70 and GFAP-positive cells (P<0.05, compared with control group) indicated the post-injury interval was between 3 and 12 hours. A low ratio (<6.66) and high percentage of HSP70 and GFAP-positive cells (P<0.05, compared with control group) suggested that the post-injury interval was later than 12 hours. Conclusion By analyzing the variation rule of the ratio of percentage positive cells after brain concussion, the post-injury interval after concussion of brain could be estimated.
ObjectiveTo investigate the expression of caspase-3 and Toll-like receptor 4 (TLR4) in the incised rat skin healing process and its relationship with the wound time and to provide an experimental evidence for the prediction of injury time. MethodsAfter the rat incised wound model was established, hematoxylin-eosin dyeing technology and immunohistochemical staining technique were used to observe the expression of caspase-3 and TLR4. Then Image Pro Plus Image analysis software and SPSS statistical analysis software were used to deal with the experimental results. ResultsCaspase-3- and TLR4-positive cells were detected in epidermis, hair follicle and sebaceous gland cells in the control skin. The expression of caspase-3 and TLR4 of the ante mortem groups were significantly different compared with the control group except the 0 h group (P<0.05). Caspase-3- and TLR4-positive cells were detected in neutrophils around the hair follicle half an hour later. Caspase-3- and TLR4-positive cell rate increased with the infiltration of inflammatory cells. Caspase-3- and TLR4-positive cell rate reached the maximum on the 3 rd day, and then it began to decrease, and they were mainly expressed in fibroblasts and mononuclear macrophages. Caspase-3- and TLR4-positive cells were mainly expressed in fibroblasts on the 10th day. There was no significant differences between the postmortem injury groups and the normal control groups (P>0.05). ConclusionCaspase-3- and TLR4-positive cell rate is time dependent and stable in 25℃ temperature environment which makes it possible to determine the time of injury.
Objective To study the relationship between the expression ratio of induced nitric oxide synthase (iNOS) over glial fibrillary acidic protein (GFAP) and the time of injury after brain concussion in rat, in order to acquire a new visual angle for determining injury time of cerebral concussion. Methods Eighty-five healthy Sprague-Dawley rats were divided into three groups randomly: model group (n=25), experimental group (n=55), and control group (n=5). The rats in the model group were used to confirm the attack hight to make the model of brain concussion; according to the time of execution, rats in the experimental group were then subdivided into 11 groups with 5 rats in each subgroup, and their execution time was respectively hour 0.5, 1, 3, 6, 12, 24, 48, 96, 168, 240, and 336; the rats in the control group were executed after fed for 24 hours. After the model of cerebral concussion was established through freefalling dart method, hematoxylin-eosin staining and immunohistochemistry staining of iNOS and GFAP were conducted for the brain of the rats. All related experimental results were studied by using microscope with image analytical system and homologous statistics. Results The ratio of positive expression of iNOS over that of GFAP increased gradually during hour 0.5- 3 after injury in brain (from 5.03 to 10.47). At the same time, the positive expression of iNOS increased significantly (from 14.61% to 37.45%). However, the increase of the positive expression of GFAP was not obvious. Between hour 3 and 12, the ratio began to decline to 4.98, which was still at a high level, and during the same time period, the positive expressions of iNOS and GFAP also experienced the same change pattern. Later, the ratio began to decline between hour 12 and 336 after injury (from 4.98 to 0.95). All ratios at this time were lower than those between hour 0.5 and 12. The positive expression of iNOS and GFAP both increased to a climax before declining. Conclusions The ratio of positive expression of iNOS over GFAP and the respective change pattern of iNOS and GFAP can be used as the evidence of estimating the injury time of cerebral concussion. We can use the ratio of two or more markers to provide a new visual angle for concluding the concussion injury time.