The goal of this paper is to solve the problems of large volume, slow dynamic response and poor intelligent controllability of traditional gait rehabilitation training equipment by using the characteristic that the shear yield strength of magnetorheological fluid changes with the applied magnetic field strength. Based on the extended Bingham model, the main structural parameters of the magnetorheological fluid damper and its output force were simulated and optimized by using scientific computing software, and the three-dimensional modeling of the damper was carried out after the size was determined. On this basis and according to the design and use requirements of the damper, the finite element analysis software was used for force analysis, strength check and topology optimization of the main force components. Finally, a micro magnetorheological fluid damper suitable for wearable rehabilitation training system was designed, which has reference value for the design of lightweight, portable and intelligent rehabilitation training equipment.
Hemolysis is one of the main complications associated with the use of ventricular assist devices. The primary factors influencing hemolysis include the shear stress and exposure time experienced by red blood cells. In addition, factors such as local negative pressure and temperature may also impact hemolysis. The different combinations of hemolysis prediction models and their empirical constants lead to significant variations in prediction results; compared to the power-law model, the OPO model better accounts for the complexity of turbulence. In terms of improving hemolytic performance, research has primarily focused on optimizing blood pump structures, such as adjustments to pump gaps, impellers, and guide vanes. A small number of scholars have studied hemolytic performance through control modes of blood pump speed and the selection of blood-compatible materials. This paper reviews the main factors influencing hemolysis, prediction methods, and improvement strategies for rotary blood pumps, which are currently the most widely used. It also discusses the limitations in current hemolysis research and provides an outlook on future research directions.
ObjectiveTo investigate the effect of pulmonary ultrasound on pulmonary complications in ultra-fast-track anesthesia for congenital heart disease surgery.MethodsIn 2019, 60 patients with congenital heart diseases underwent ultra-fast-track anesthesia in Shenzhen Children's Hospital, including 34 males and 26 females with the age ranging from 1 month to 6 years. They were randomly divided into a normal group (group N, n=30) and a lung ultrasound optimization group (group L, n=30). Both groups were used the same anesthesia method and anesthetic compatibility. The group N was anesthetized by ultra-fast-track, the tracheal tube was removed after operation and then the patients were sent to the cardiac intensive care unit (CCU). After operation in the group L, according to the contrast of pre- and post-operational lung ultrasonic examination results, for the patients with fusion of B line, atelectasis and pulmonary bronchus inflating sign which caused the increase of lung ultrasound score (LUS), targeted optimization treatment was performed, including sputum suction in the tracheal tube, bronchoscopy alveolar lavage, manual lung inflation suction, ultrasound-guided lung recruitment and other optimization treatments, and then the patients were extubated after lung ultrasound assessment and sent to CCU. The occurrence of pulmonary complications, LUS, oxygenation index (OI), extubation time, etc were compared between the two groups.ResultsCompared with the induction of anesthesia and 1 hour after extubation of the two groups, the incidence of pulmonary complications in the group L (18 patients, 60.0%) was lower than that in the group N (26 patients, 86.7%, χ2= 4.17, P=0.040) and the rate of patients with LUS score reduction was higher in the group L (15 patients, 50.0%) than that in the group N (7 patients, 23.3%, χ2=4.59, P=0.032). The correlation analysis between the LUS and OI value of all patients at each time point showed a good negative correlation (P<0.05). Extubation time in the group L was longer than that in the group N (18.70±5.42 min vs. 13.47±4.73 min, P=0.001).ConclusionUltra-fast-track anesthesia for congenital heart disease can be optimized by pulmonary ultrasound examination before extubation, which can significantly reduce postoperative pulmonary complications, improve postoperative lung imaging performance, and help patients recover after surgery, and has clinical application value.
The objective of this study was to determine the visco-hyperelastic constitutive law of brain tissue under dynamic impacts. A method combined by finite element simulations and optimization algorithm was employed for the determination of material variables. Firstly, finite element simulations of brain tissue dynamic uniaxial tension, with a maximum stretch rate of 1.3 and strain rates of 30 s–1 and 90 s–1, were developed referring to experimental data. Then, fitting errors between the engineering stress-strain curves predicted by simulations and experimental average curves were assigned as objective functions, and the multi-objective genetic algorithm was employed for the optimation solution. The results demonstrate that the brain tissue finite element models assigned with the novel obtained visco-hyperelastic material law could predict the brain tissue’s dynamic mechanical characteristic well at different loading rates. Meanwhile, the novel material law could also be applied in the human head finite element models for the improvement of the biofidelity under dynamic impact loadings.
Due to individual differences of the depth of anaesthesia (DOA) controlled objects, the drawbacks of monitoring index, the traditional PID controller of anesthesia depth could not meet the demands of nonlinear control. However, the adjustments of the rules of DOA fuzzy control often rely on personal experience and, therefore, it could not achieve the satisfactory control effects. The present research established a fuzzy closed-loop control system which takes the cerebral state index (CSI) value as a feedback controlled variable, and it also adopts the particle swarm optimization (PSO) to optimize the fuzzy control rule and membership functions between the change of CSI and propofol infusion rate. The system sets the CSI targets at 40 and 30 through the system simulation, and it also adds some Gaussian noise to imitate clinical disturbance. Experimental results indicated that this system could reach the set CSI point accurately, rapidly and stably, with no obvious perturbation in the presence of noise. The fuzzy controller based on CSI which has been optimized by PSO has better stability and robustness in the DOA closed loop control system.
Internal fixator is usually adopted in the treatment of bone fractures. In order to achieve anatomical reduction and effective fixation of fractures, the placement of internal fixators should comply with the biology force line of the bone and adapt to the specific anatomical morphological characteristics of the cortical bone. In order to investigate the distribution characteristics and formation regularity of biology force line and cortical thickness of human bone, three-dimensional model of proximal femur is established by using three-dimensional reconstruction technique in this paper. The normal physiological stress distribution of proximal femur is obtained by finite element analysis under three kinds of behavior conditions: one-legged stance, abduction and adduction. The structural topology optimization method is applied to simulate the cortex of the proximal femur under the combined action of three kinds of behavior conditions, and the anatomic morphological characteristics of the proximal femur are compared. The distribution trend of biology force line of proximal femur and the characteristics of cortex are analyzed. The results show that the biology force lines of bone structure and the morphological characteristics of cortex depend on the load of human activities. The distribution trend of biology force line is related to the direction of trabecular bone and the ridge trend and firmness of cortex when bone is loaded physiologically. The proposed analytical method provides a solution to determine the biology force line of bone and the distribution characteristics of cortex. The conclusions obtained may guide the reasonable placement of internal fixator components of fracture.
The nondestructive reconstruction of three-dimensional (3D) temperature field in biological tissue is always an important problem to be resolved in biomedical engineering field. This paper presents a novel method of nondestructive reconstruction of 3D temperature field in biological tissue based on multi-island genetic algorithm (MIGA). By this method, the resolving of inverse problem of bio-heat transfer is transformed to be a solving process of direct problem. An experiment and its corresponding simulation were carried out to verify the feasibility and reliability. In the experiment a high purity polypropylene material, whose thermophysical parameters were similar to the fat tissue being tested, were adopted so that it could avoid the negative results created by the other factors. We set the position P(x, y, z) as the point heat source in the biological tissue and its temperature t as optimization variable, got the experimental temperature values of the points in a module surface, subtracted them from the corresponding simulating temperature values in the same module surface, and then took the sum of absolute value. We took it as the objective function of successive iteration. It was found that the less the target value was, the more optimal the current variables, i.e. the heat source position and the temperature values, were. To improve the optimization efficiency, a novel establishment method of objective function was also provided. The simulating position and experimental position of heat source were very approximate to each other. When the optimum values are determined, the corresponding 3D temperature field is also confirmed, and the temperature distribution of arbitrary section can be acquired. The MIGA can be well applied in the reconstruction of 3D temperature field in biological tissue. Because of the differences between the MIGA and the traditional numerical methods, we do not have to acquire all the data of surface. It is convenient and fast, and shows a prosperous application future.
By analyzing the physiological structure and motion characteristics of human ankle joint, a four degree of freedom generalized spherical parallel mechanism is proposed to meet the needs of ankle rehabilitation. Using the spiral theory to analyze the motion characteristics of the mechanism and based on the method of describing the position with spherical coordinates and the posture with Euler Angle, the inverse solution of the closed vector equation of mechanism position is established. The workspace of mechanism is analyzed according to the constraint conditions of inverse solution. The workspace of the moving spherical center of the mechanism is used to match the movement space of the tibiotalar joint, and the workspace of the dynamic platform is used to match the movement space of subtalar joint. Genetic algorithm is used to optimize the key scale parameters of the mechanism. The results show that the workspace of the generalized spherical parallel mechanism can satisfy the actual movement space of human ankle joint rehabilitation. The results of this paper can provide theoretical basis and experimental reference for the design of ankle joint rehabilitation robot with high matching degree.
To enhance the accuracy of computer-aided diagnosis of adolescent depression based on electroencephalogram signals, this study collected signals of 32 female adolescents (16 depressed and 16 healthy, age: 16.3 ± 1.3) with eyes colsed for 4 min in a resting state. First, based on the phase synchronization between the signals, the phase-locked value (PLV) method was used to calculate brain functional connectivity in the θ and α frequency bands, respectively. Then based on the graph theory method, the network parameters, such as strength of the weighted network, average characteristic path length, and average clustering coefficient, were calculated separately (P < 0.05). Next, using the relationship between multiple thresholds and network parameters, the area under the curve (AUC) of each network parameter was extracted as new features (P < 0.05). Finally, support vector machine (SVM) was used to classify the two groups with the network parameters and their AUC as features. The study results show that with strength, average characteristic path length, and average clustering coefficient as features, the classification accuracy in the θ band is increased from 69% to 71%, 66% to 77%, and 50% to 68%, respectively. In the α band, the accuracy is increased from 72% to 79%, 69% to 82%, and 65% to 75%, respectively. And from overall view, when AUC of network parameters was used as a feature in the α band, the classification accuracy is improved compared to the network parameter feature. In the θ band, only the AUC of average clustering coefficient was applied to classification, and the accuracy is improved by 17.6%. The study proved that based on graph theory, the method of feature optimization of brain function network could provide some theoretical support for the computer-aided diagnosis of adolescent depression.
Stress distribution of denture is an important criterion to evaluate the reasonableness of technological parameters, and the bite force derived from the antagonist is the critical load condition for the calculation of stress distribution. In order to improve the accuracy of stress distribution as much as possible, all-ceramic crown of the mandibular first molar with centric occlusion was taken as the research object, and a bite force loading method reflecting the actual occlusal situation was adopted. Firstly, raster scanning and three dimensional reconstruction of the occlusal surface of molars in the standard dental model were carried out. Meanwhile, the surface modeling of the bonding surface was carried out according to the preparation process. Secondly, the parametric occlusal analysis program was developed with the help of OFA function library, and the genetic algorithm was used to optimize the mandibular centric position. Finally, both the optimized case of the mesh model based on the results of occlusal optimization and the referenced case according to the cusp-fossa contact characteristics were designed. The stress distribution was analyzed and compared by using Abaqus software. The results showed that the genetic algorithm was suitable for solving the occlusal optimization problem. Compared with the reference case, the optimized case had smaller maximum stress and more uniform stress distribution characteristics. The proposed method further improves the stress accuracy of the prosthesis in the finite element model. Also, it provides a new idea for stress analysis of other joints in human body.