Abstract To observe the effect of fibroblast growth factor (FGF) on wound healing, 50 mice were divided into 5 groups. On the back of every mouse, 2 wounds were made by operative cuts, one for experiment and the other for control. The wounds of the experimental group were covered with 0.5ml FGF solution (contented FGF 300 μg/ml, heparin 100 μg/ml), whereas the wounds of the control group were covered with 0.5ml 0.9% NaCl solution. All of the wounds were dressed by sterilized gauze, and received the same treatment once a day. After 1,3,5,7,10 days, the mice in every group were sacrificed and the tissues of the wounds were collected and prepared for microscopic examination. The results showed that the capillaries and fibroblasts in the experimental group were markedly increased and reached the peak 2~3 days earlier than those in the control group. It was suggested that FGF promoted the formation of granulation tissue and the wound healing.
In order to explore the effect of Sipunculus nudus extract (SNE) on skin wound healing in mice and its mechanism, hemostasis effect of SNE was measured, the mouse skin wound model was established by full-thickness excision. The morphological changes of the wound were observed after the treatment with SNE and the healing rate was measured. The changes of wound histology were observed by hematoxylin eosin (HE) staining, Masson staining and transmission electron microscope (TEM). The expression of cell factors and related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the SNE possessed hemostatic function. SNE could obviously improve the healing rate of wound in mouse and shorten time of scab removal compared with the none-treatment (NT) group (P < 0.05).The pathological histology analysis results showed complete epidermal regeneration, with remarkable capillary and collagen fiber observed in the SNE group. The expression level of tumor necrosis factor-α (TNF -α), interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) in SNE group was significantly lower than that of the NT group on 7 d (P < 0.05). Moreover, compared with the NT group, the gene expressions level of Smad7 was significantly increased and the level of type II TGF-β receptors (TGF-βRII), collagen I (COL1A1) and α-smooth muscle actin (α-SMA) were significantly reduced in the SNE group on 28 d (P < 0.05), but the difference was not statistically significant compared to Yunnanbaiyao group (PC group) (P > 0.05). These results indicated that SNE possessed obvious activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to hemostatic function, regulation of inflammatory factors, collagen deposition, collagen fiber remodeling and intervening TGF-β/Smads signal pathway. Therefore, SNE may have promising clinical applications in skin wound repair and scar inhibition.
Periwound skin, as an indicator of the wound healing monitoring process, is one of the most important components of wound management. Effective management of periwound skin is a major professional challenge. In practice, healthcare professionals usually focus on the wound site and pay little attention to the periwound skin. Inappropriate management of periwound skin will delay the wound healing process, increase the economic costs of the patients, and decrease the patients’ satisfaction with medical care. This article summarizes the clinical symptoms, assessment tools, and management strategies of periwound skin, aiming to provide new ideas and references for clinical wound management.
Bacterial biofilm is the key problem of chronic wound infection and difficult healing. How to prevent and control bacterial biofilm and improve the prognosis of chronic wound has become a research hotspot in the field of wound care. This paper will summarize from the following aspects: four major stages in the process of chronic wound bacteria biofilm formation (surface adhesion, formation of small colonies, biofilm maturation, and dispersion and separation); characteristics of host immune response in the presence of biofilms; morphological, microbiological, and molecular detection methods for biofilms; and progress in in vitro trials, animal trials, clinical trials, and new therapeutic methods of biofilm. The purpose of this review is to provide evidence for the treatment of biofilms for chronic wounds.
目的 探讨临床实施医护一体化伤口治疗模式的效果和前景。 方法 利用调查问卷方式,对2010年12月-2011年12月19个科室临床实施医护一体化伤口治疗模式的效果进行满意度调查。 结果 医生、患者、护士的总体满意度分别达到94.51%、94.56%、91.43%。 结论 医护一体化伤口治疗模式能够明显提高医护患三方满意度,值得在临床推广。
ObjectiveTo summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue.MethodsThe related literature about adipose tissue for wound healing in recent years was reviewed and analyzed.ResultsEnormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated.ConclusionAdipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing.