Objective To construct the responsive plasmid PTRE-HIF-1αof Tet-on gene expression system and examine its expression. Methods RT-nested PCR was performed on the total RNA extracted from hypoxia HepG2 cells to obtain the cDNA of HIF-1α, which was inserted into the responsive plasmid PTRE2hyg. DNA sequencing was performed after the recombinant of responsive plasmid PTRE-HIF-1α was identified by endonuclease digestion. This recombinant vector was transfected into HepG2Tet-on cells by means of liposome and its expression was examined by RT-PCR and Western blot under the control of deoxycycline. Results The amplified products were confirmed as the cDNA of HIF-1α by DNA sequencing. The responsive plasmid PTRE-HIF-1α verified by edonuclease digestion, was capable of expression in HepG2Tet-on cells and could be controlled by deoxycycline. Conclusion The responsive plasmid PTRE-HIF-1α of Tet-on expression system is constructed successfully, and it can express under the regulation of deoxycycline in the HepG2Tet-on cells.
Objective To evaluate the effects of Shengji Yuhong collagen on promoting angiogenesis of the ischemia tissues and probe the possible mechanisms. Methods Forty-eight Wistar rats were divided by random method of paired into blank group, control group (collagen),and experimental group (Shengjiyuhong collagen). After made the rats hind limb ischemia model, collagens with or without the extracts of Shengji Yuhong Gao were randomly paired implanted locally in hind limb ischemia tissues of rats in experimental group or control group. The samples of collagens and tissues about 0.5 cm large surrounding the collagen were explanted respectively on day 3,7, 14, and 28 for detected the hemog-lobin contents in colagen, microvascular counting by using CD34 immunohistochemical markers, and the expressions of HIF-1α mRNA and VEGF mRNA by using real-time fluorescent quantitative RT-PCR. The blood perfusion of the ischemic tissues at each time were determined by using laser speckle imaging system of Moor-FLPI. Results The results of Moor-FLPI showed that the obvious ischemia condition after model made, the blood perfusion was significantly lower than that before operation (P<0.01). On day 3 after operation it showed obvious congestion in the ischemic tissues, and from day 7 to day 14, it showed the ischemia state locally till day 28 after operation which showed improved situation of ischemic. Except for the day 3, the blood perfusion of experimental group were higher than those of blank group (P<0.05). There was no statistical significance between the blank group and control group (P>0.05). The blood perfusion on day 7 and day 14 after operation of experimental group were higher than those of control group (P<0.05). The hemoglobin contentsof each time point in the experimental group were higher than those in the control group (P<0.01). The microvascular counting on day 7 and day 14 in experimental group were higher than those of control group (P<0.05). The expressions of HIF-1α mRNA and VEGF mRNA at each time point of experimental group were higher than those of control group and blank group (P<0.05), and there was no significant differences between the control group and blank group (P>0.05). Conclusion The effects on promoting angiogenesis of rat hind limb ischemia tissues with Shengji Yuhong collagen may though inducing the expressions of HIF-1 α mRNA and VEGF mRNA locally.
ObjectiveTo explore the relationship between the oxygen partial pressure of mice hindlimb muscles with normal blood supply or ischemia and expression of HIF-1αprotein, and to provide a theoretical basis for the study of angiogenesis in vitro hypoxia. MethodsMice hind limb ischemia model were established, tissue oxygen tension of gastrocnemius muscle and bone marrow were measured by micro electrode at different time points of ischemia (24 hours, 1 week, 2 weeks, 3 weeks, and unoperated as control). Protein level of hypoxia inducible factor-1αand histological examination were performed on gastrocnemius muscle as well. ResultsThe oxygen tension baselines of gastrocnemius muscle and femoral bone marrow was (47.78±4.37) mm Hg and (21±3.40) mm Hg, respectively. Muscle oxygen tension decreased significantly at all time points after modeling (P < 0.05), and reached lowest level in 1 week of ischemia. The inflammatory reaction was most serious and HIF-1αprotein reached highest level at the same time point. With the extension of ischemic time, the tissue oxygen tension recovered while HIF-1αlevel was down-regulated, however, There was no statistical correlation(r=-0.86, P > 0.05). Oxygen tension in bone marrow didn't show any significant change at all time points. ConclusionsThe expression level of HIF-1αprotein in ischemic tissue can reflect the degree of ischemic limb. The concept that physiological oxygen level differs in different tissue is highlighted, and may provide basis for ex vivo hypoxic research.
Objective To explore the influence on the expressions of vascular endothelial growth factor (VEGF) gene and matrix metalloproteinase-2 (MMP-2) gene in hepatocellular carcinoma of SMMC-7721 cells with RNA interference (RNAi) silencing the expression of hypoxia inducible factor-1α (HIF-1α) gene. Methods Firstly, constructed short hairpin RNA (shRNA) targeting for HIF-1α gene, and then transfected it to SMMC-7721 cells after combining with plasmid. The SMMC-7721 cells were divided into three groups, silencing group, negative control group, and blank control group, which were transfected with HIF-1α-shRNA-pGenesil-1 recombinant vector, shRNA-HK-pGenesil-1 recombinant vector, and pGenesil-1 vector respectively. Transfection cells were screened by the concentration of 500 μg/mL G418, and then positive and negative cell clones with transfection recombination carrier were obtained. Detected the expressions of HIF-1α mRNA, VEGF mRNA, and MMP-2 mRNA in the 3 groups with real time PCR (RT-PCR) technology, under the condition of hypoxic training 6 h, 12 h, and 24 h, as well as conventional oxygen training. Results There was no expression of HIF-1α mRNA at conventional oxygen condition in the 3 groups, and there was no significant difference in expressions of VEGF mRNA and MMP-2 mRNA among the 3 groups (P>0.05) at the condition of conventional oxygen training. The expressions of HIF-1α mRNA, VEGF mRNA, and MMP-2 mRNA in the silencing group, compared with the the negative control group and the blank control group, were obviously decreased (P<0.05) under the condition of hypoxic training (6, 12, and 24 h), while there was no significant difference between the negative control group and the blank control group at each time point (P>0.05), but the expressions of HIF-1α mRNA, VEGF mRNA, and MMP-2 mRNA in the 3 groups under every condition of hypoxic training were all higher than those of conventional oxygen condition (P<0.05). Under the condition of hypoxic training, the expressions of HIF-1α mRNA, VEGF mRNA, and MMP-2 mRNA in the 3 groups decreased over time, and there was significant difference between any 2 time points in each group (P<0.05). Conclusion RNAi technique can effectively silence the expression of HIF-1α mRNA of SMMC-7721 cells, and then silence the expressions of VEGF and MMP-2 mRNA, to inhibit the invasion and metastasis of hepatocellular carcinoma.
ObjectiveTo investigate the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a hypoxia-inducible factor-1α (HIF-1α) inhibitor, on hypoxia induced rat pulmonary arterial adventitial fibroblasts (AFs) proliferation and collagen synthesis, and explore the molecular mechanism.MethodsUnder hypoxic condition, rat AFs were cultured in DMEM medium supplemented with 10% fetal bovine serum in vitro. The cells were divided into five groups, ie. a normoxia group, a hypoxia group and three hypoxia+YC-1 groups (treated with YC-1 at concentration of 0.01, 0.05 and 0.1 mmol/L, respectively). The cells proliferation was determined by MTT method. Collagen synthesis of AFs was measured by 3H-proline incorporation assay. The expression of HIF-1α in AFs in different conditions was measured by Western blot, and the mRNA expression of transforming growth factor-β1 (TGF-β1) was measured by reverse-transcription polymerase chain reaction.ResultsThe proliferation rate and the incorporation data of 3H-proline in the hypoxia group were significantly increased as compared with those in the control group (both P<0.01). YC-1 significantly reduced the proliferation rate and incorporation data of3H-proline induced by hypoxia in a dose-dependent manner. YC-1 could also down-regulate the expressions of HIF-1α and TGF-β1 mRNA significantly (both P<0.01). Compared with the hypoxia group, the expressions of HIF-1α and TGF-β1 mRNA decreased respectively by 65% and 61% in the hypoxia+YC-1 (0.1 mmol/L) group (bothP<0.01).ConclusionsYC-1 can inhibit hypoxia-induced AFs proliferation and collagen synthesis in a dose-dependent manner. The mechanism may relate to YC-1’s inhibitory effect on expressions of HIF-1α and TGF-β1 mRNA.
ObjectiveTo explore the effects of hypoxia inducible factor-1 alpha (HIF-1α) on the reverse differentiation of hepatocellular carcinoma cells into liver cancer stem cells, and the maintenance of malignant biological behavior in hypoxic environment.MethodsCD133-negative cells in HepG2 cells were separated by immunomagnetic beads and divided into two groups. The cells of siRNA group were transfected with siRNA-HIF-1α to silence the expression of HIF-1α gene, while cells of the blank control group did not transfect any siRNA fragments. The two groups of cells were cultured under normal and hypoxic conditions respectively. MTT, cloning and Transwell chamber experiments were used to detect the proliferation and invasion ability of cells. Western blot and real-time PCR (RT-PCR) were used to detect the expressions of HIF-1α, CD133, CD90, and CD44 protein and mRNA in cells.ResultsMTT results showed that the cell proliferation rate increased with the prolongation of hypoxia in four groups. Compared with the blank control group at 24, 32, 40, and 48 hours, the cell proliferation rate decreased significantly after siRNA-HIF-1a transfection, on both two kinds of cultured conditions (P<0.05). The results of plate cloning experiment showed that the number of cell-forming clones increased significantly after hypoxic culture (there were significant differences between the transfected normoxic group and transfected hypoxic group, blank control normoxic group and blank control hypoxic group, P<0.05); and the formation of transfected hypoxic condition group at the same time of hypoxia was also significant (P<0.05). The number of clones were significantly less than that of the blank control group at the hypoxic condition (P<0.05). Transwell lab experiment showed that after hypoxic culture, the number of cells migrated to the inferior chamber in the transfection group was significantly reduced compared with that of the blank control group (P<0.05). Western blot and RT-PCR results showed that the expression levels of HIF-1α protein and tumor stem cell markers (CD133, CD90, and CD44 protein) in the blank control hypoxic condition group were significantly higher than those in the other three groups (P<0.05); after siRNA-HIF-1a transfection, HIF-1α mRNA and tumor stem cell markers mRNA (CD133, CD90, and CD44 mRNA) in the transfected hypoxic condition group were significantly lower than those in the transfected normal condition group and the blank control normal condition group (P<0.05).ConclusionsIn hypoxia environment, HIF-1α can promote hepatocellular carcinoma cells to differentiate into liver cancer stem cells and enhance their malignant biological behavior.