Purpose To investigate the effects of intervention with Tanakan on anterior ocular segment in diabetic retinopathy (DR) after retinal photocoagulation. Methods Prospective random controlled study was performed on 72 patients (72 eyes) with ultrasound biomicroscopy (UBM),by obtaining and quantitatively analyzing the changes of anterior ocular segment including anterior chamber, anterior chamber angle, ciliary body and choroids before and the 3rd day and the 7th day after retinal photocoagulation. Results Three days after photocoagulation, significant elev ated IOP and narrowed chamber angle were observed in control group and 4 eyes (1 1.11%) in Tanakan group (Plt;0.01). Choroidal detachment in 32 eyes (88.89%) in control group and in 2 eyes (5.56%) in Tanakan group and the severity of ciliochoroidal detachment in tanakan group was significantly lower than that in control group. Conclusion Tanakan is effective to prevent the complications of anterior segment, such as ciliochoroidal detachment, elevation of IOP, narrowing of chamber angle occurring early after retinal photocoagulation and reduce the severity of ciliochoroidal detachment. (Chin J Ocul Fundus Dis, 2001,17:187-189)
Objective To observe the visual field loss after 577 nm krypton pan-retinal photocoagulation (PRP) in the treatment of diabetic retinopathy (DR). Methods A prospective clinical studies. Forty-six eyes of 26 patients with proliferative DR (PDR) and severe non-proliferative DR (NPDR) diagnosed by clinical examination from No. 306 Hospital of PLA during January 2014 and December 2015 were included in this study. Among them, 21 eyes of NPDR and 20 eyes of PDR; 13 eyes with diabetic macular edema (DME) (DME group) and 28 eyes without DME (non-DME group). All eyes underwent best corrected visual acuity (BCVA), fundus color photography, fundus fluorescein angiography (FFA) and optical coherence tomography (SD-OCT) examinations. The visual field index (VFI) and visual field mean defect (MD) values were recorded by Humphrey-7401 automatic visual field examination (center 30° visual field). The BCVA of DR eyes was 0.81±0.28; the VFI and MD values were (89.8±8.4)% and −7.5±3.85 dB, respectively. The BCVA of the eyes in the without DME group and DME group were 0.92±0.20 and 0.57±0.27, the VFI were (90.86±7.86)% and (87.46±9.41)%, the MD values were −6.86±3.43 and 8.87±4.48 dB. PRP was performed on eyes using 577 nm krypton laser. The changes of VFI, MD and BCVA were observed at 1, 3, and 6 months after treatment. Results Compared with before treatment, the VFI of DR eyes decreased by 12.0%, 12.3% and 14.8% (t=7.423, 4.549, 4.79; P<0.001); the MD values were increased by −4.55, −4.75, 6.07 dB (t=−8.221, −5.313, −5.383; P<0.001) at 1, 3 and 6 months after treatment, the differences were statistically significant. There was no difference on VFI (t=1.090, −0.486; P>0.05) and MD value (t=−0.560, −0.337; P>0.05) at different time points after treatment. Compared with before treatment, the BCVA was significantly decreased in DR eyes at 1 month after treatment, the difference was statistically significant (t=2.871, P<0.05). Before and after treatment, the BCVA of the DME group was lower than that of the non-DME group, the difference were statistically significant (t=4.560, 2.848, 3.608, 5.694; P<0.001); but there was no differences on the VFI (t=1.209, 0.449, 0.922, 0.271; P>0.05) and MD values (t=1.582, 0.776, 0.927, 1.098; P>0.05) between the two groups. Conclusion The range of 30° visual field loss is about 12%-14.8% after 577 nm krypton laser PRP for DR. VFI and MD can quantitatively analyze the and extent of visual field loss after PRP treatment.
Macular edema is a common cause of visual loss in patients with retinal vascular diseases represented by diabetic retinopathy and retinal vein occlusion. Laser photocoagulation has been the main treatment for this kind of diseases for decades. With the advent of antagonist of vascular endothelial growth factor and dexamethasone implant, diabetic macular edema and macular edema secondary to retinal vein occlusion have been well controlled; the use of laser therapy is decreasing. However, considering possible risks and complications, lack of extended inspection of efficacy and safety of intravitreal pharmacotherapy, laser therapy cannot be replaced by now. Therefore, the efficacy and safety of laser therapy will improve by sober realization of role of photocoagulation and proper selection of treatment indication.
To observe the efficacy of intravitreal injection of conbercept (IVC) combined with panretinal laser photocoagulation (PRP) in the treatment of diabetic retinopathy (DR) combined with stage I and II neovascular glaucoma (NVG).MethodsA clinical case-control study. From October 2013 to March 2019, 50 eyes (50 patients) with DR and stage Ⅰ to Ⅱ NVG diagnosed in the Department of Ophthalmology, Peoples's Hospital of Xianghe were were included in the study. There were 27 eyes (27 males) and 23 eyes (23 females); all patients were monocular with the average age of 53.5±7.13 years old. Stage Ⅰ and Ⅱ NVG were 11 and 39 eyes, respectively. All patients underwent BCVA, intraocular pressure, and fundus angiography. The BCVA examination adopted the international standard visual acuity chart, which was converted to logMAR BCVA visual acuity in statistics. The patients were divided into the Conbercept+laser therapy (combination therapy) group and the laser therapy group by random number table, with 25 eyes. The age of the two groups of patients (t=0.058), gender composition ratio (χ2=0.081), logMAR BCVA (t=0.294), intraocular pressure (t=-0.070), the number of eyes with different grades of angle and iris neovascularization(χ2=1.683, 0.854)were compared, the difference was not statistically significant (P>0.05). The changes of BCVA, intraocular pressure, iris neovascularization, and angular neovascularization were compared and observed between the two groups one week after the completion of PRP treatment, 1, 3, 6, and 9 months. Independent sample t test was used for continuous variables. Between the combination treatment group and the laser treatment group, at different time points within the two groups and the interaction of the two factors, a single-factor repeated analysis of variance was used.ResultsCompared with the results before treatment, the combined treatment group and laser treatment group had statistically significant differences in the number of angle and iris neovascularization, intraocular pressure and logMAR BCVA at different times after treatment in the combined treatment group and laser treatment group (F=124.211, 65.153, 69.249, 26.848; P<0.001). After treatment, the combined treatment group was better than the laser treatment group in terms of the regression of eye angle and iris neovascularization, intraocular pressure and logMAR BCVA, and the difference was statistically significant (F=47.543, 25.051, 12.265, 9.994; P=0.001, 0.001, 0.001, 0.003). At different times after treatment, compared with the laser treatment group, the number of neovascularization in the iris and angle of the eye in the combined treatment group was less, the intraocular pressure was significantly decreased, and the BCVA was increased. The difference was statistically significant (P<0.05).ConclusionThe efficacy of Kang IVC combined with PRP in the treatment of DR with stage Ⅰ and Ⅱ NVG is better than that of PRP alone.
Objective To observe the functional and morphological changes of macular after panretinal photocoagulation(PRP)in the patients with diabetic retinopathy(DR).Methods A total of 57 eyes of 34 patients with DR undergoing PRP were enrolled in this prospective and self-reflection study. Comparatively analyze the changes of the best visual acuity(BCVA), optical coherence tomography (OCT) and multi-focal electroretinography (mfERG) before PRP,20 days, 3 months and more than 9 months after PRP. Statistical analyses were performed by wilcoxon, chisquare, Dunnett-t, LSD-t tests and spearman related analyses. The changes of macular function and foveal retinal thickness before and after PRP were comparatively analyzed.Results BCVA of all patients reduced at 9 months after PRP(P=0.022).The amplitude density of mfERG P1 of ring 2 decreased at 20 days after PRP(P=0.039),then recovered at 3 months and decreased again at 9 months(P=0.014).The amplitude density of mfERG P1 of ring 3-5 decreased at 20 days,3 months and more than 9 months after PRP(20 days: ring 3: P=0.000,ring 4: P=0.001, ring 5: P=0.000;3 months: ring 3:P=0.000, ring 4: P=0.006, ring 5: P=0.001; more than 9 months: ring 3: P=0.000,ring 4: P=0.000, ring 5: P=0.000). The amplitude density of mfERG P1 of ring 1 was significantly lower at 9 months after PRP(P=0.050). The foveal retinal thickness increased at 20 days after PRP(P=0.007), then recovered at 3 months or later. Cystoid macular degeneration was found in 6 eyes(10.5%) at 20 days after PRP.Conclusions After the treatment of PRP, there were some extend reduction of the macular function, a transient increase on foveal retinal thickness. Combined mfERG and OCT can be a comprehensively and objectively assessment of macular function and morphology.