Objective Tri ptol ide can suppress immunological rejection reaction. To investigate the effect of tri ptol ide on allogenic tendon transplantation in repairing tendon defect in chicken. Methods The defect model of the third toes tendon was establ ished in 64 healthy-cleaning male Leghorn chickens (4-month-old, weighing 1.9-2.3 kg), which underwent allogenic tendon transplantation for repairing and were divided into 2 groups randomly (n=32). Tri ptol ide feeding[100 μg/(kg·d)] was given for 3 weeks in the experimental group and normal feeding in the control group. General condition of the chickens was observed after operation. The transplanted tendons were harvested from 4 chickens in each group for gross observation at 1, 2, 3, and 4 weeks after operation; the histological observation was performed at 1 and 3 weeks, and transmission electron microscope observation at 2 and 4 weeks. The blood and tendon were harvested from another 8 chickens in each group for flow cytometry and biomechanical tests respectively at 3 and 6 weeks. Results All chickens survived to the experiment end. Gross observation: with time extending, hyperemia and edema around transplanted tendon were rel ieved. Rarefaction adhering zone was seen in experimental group, and pyknotic adhering zone in control group. Histological observation: inflammatory reaction in experimental group was sl ighter than that in control group at 1 and 3 weeks. Transmission electron microscope observation: at 2 and 4 weeks, fibroblasts had big cell nucleus, more euchromatin, and l ittle heterochromatin in experimental group; however, there were small amount of rough endocytoplasmic reticulums with gentle expanded capsular space in control group, which contained sparse content. Flow cytometry test: at 3 and 6 weeks, peri pheral blood contained less CD4+ and CD8+ T lymphocytes in experimental group than in control group, and the ratio of CD4+ to CD8+ T lymphocyte significantly decreased in experimental group when compared with control group (P lt; 0.05). Biomechanical examination: at 3and 6 weeks, the maximum tensile strength in experimental group was bigger than that in control group, and tensile adhesion power in experimental group was smaller than that in control group. There were significant differences in the indexes between 2 groups (P lt; 0.05). Conclusion Tri ptol ide can suppress immunological rejection reaction, strengthen tendon healing strength, and reduce tendon adhesion in allogenic tendon transplantation.
Objective To introduce the research progress in the immune of composite tissue allotransplantation. Methods The related articles were reviewed to summarize the immune characteristics, experimental developments, and cl inical experiences of composite tissue allotransplantation. Results Composite allogeneic tissue is on the body surface, including the composition of the complex with high antigenicity. There are a lot of differences in the immune responsesbetween composite tissue allotransplantation and organ transplantation, such as immunosuppressant protocol, rejectiondiagnosis, and chronic rejection. Conclusion In the next study, it is urgently needed to learn these experiences and toestabl ish the special standard of composite tissue allotransplantation in induction of immune tolerance, local medication, and rejection diagnosis.
Objective To study the immunological rejection occurred in different period after the in vivo implantation of vitreous-cryopreservation tissue engineered tendons for the repair of tendon defect and investigate its influences on the hepatic, renal, and cardiovascular function of rats. Methods Tenocytes obtained from tail tendon of one-weekold SD rats were cultured in vitro. The tenocytes at passage 2-4 (5 × 106 cells/mL) were co-cultured with 1.5 cm bio-derived tendon material to reconstruct tissue engineered tendon. The 21% DMSO was used as cryopreservation protection solution andthe Eurocoll ins solution served as basic solution for pre-frozen solution (4 ) and eluent. The cell-scaffold composites were vitreous-cryopreserved by self-designed method. Seventy-two healthy SD rats (male and/or female) weighing 210-230 g were randomly divided into three groups: group A (n=32), group B (n=32), and group C (n=8). The 0.5 cm tendon defect model was establ ished in the middle part of Achilles tendon in groups A and B. The defect in group A and B was repaired by the transplantation of tissue engineered tendon with and without vitreous-cryopreservation, respectively. At 2, 4, 6, and 8 weeks after transplantation, the general observation and the detection of hepatic function, renal function, and cardiovascular function were conducted. At 2, 4, and 6 weeks after transplantation, serum immunology test was conducted. Results There were no tissue necrosis, hydrops, and suppurative infection in groups A and B. The adhesion was evident in groups A and B 2 weeks after transplantation, improved gradually during 4-6 weeks, and disappeared at 8 weeks. The neonatal tissue had full integration and continuity, and the bridging region of the tendon healed and was similar to the normal tendon. For serum IgG and IgM content, there was no significant difference when group A or B was compared with group C, and between group A and group B 2, 4, and 6 weeks after transplantation (P gt; 0.05). Hepatic function: aspartate aminotransferase (AST) content of group A was less than that of group C 4 weeks after transplantation (P lt; 0.05); AST content of group B was less than that of group C 4 and 6 weeks after transplantation (P lt; 0.05); but there was no significant difference when group A or B was compared with group C in terms of other indexes 8 weeks after transplantation (P gt; 0.05). Renal function: serum albumin and creatinine in groups A and B were decreased obviously, and significant difference was evident when compared with group C (P lt; 0.05). Cardiovascular function: there was no significant difference between group A and group C in terms of blood glucose, triglyceride, and cholesterol (P gt; 0.05);there was a significant difference between group B and group C in terms of triglyceride 8 weeks after transplantation (P lt; 0.05). Conclusion Repairing tendon defect with the implantation of vitreous-cryopreservation tissue engineered tendons results in no obvious immunological rejection and exerts no obvious influences on hepatic, renal, and cardiovascular function.
ObjectiveTo summarize the advances of precl inical research in xenogeneic (porcine) cell transplantation in recent years. MethodsThe literature about the precl inical research in xenogeneic (porcine) cell transplantation was analyzed and summarized. ResultsWith the application of new immunosuppressive agents and the generation of transgenic pigs, great progress has been achieved in xenogeneic transplantation of pig-derived nerve cells, islet cells, liver cells, and various types of stem cells. The survival time of xenogeneic cell (porcine) significantly prolonged, but there is still a long way to go before cl inical application. ConclusionThe source of xenogeneic (porcine) cells is abundant and the experiments are reproducible. However, how to effectively prevent rejection and prolong the survival time in the host, and avoid the spread of virus between species are still need to be solved in the future research.
ObjectiveTo evaluate the effects and mechanism of indoleamine 2, 3-dioxygenase (IDO) modified rat bone marrow mesenchymal stem cells (BMSCs) in composite tissue allograft rejection. MethodsBMSCs isolated from Brown Norway (BN) rats (aged, 4-6 weeks) were infected by IDO[green fluorescent protein (GFP)]-lentivirus. The high expression target gene and biological activity cell line (IDO-BMSCs) were screened. IDO mRNA and protein expressions were detected by RT-PCR and Western blot. The biological activity of IDO in supernatant was detected by measuring the amount of kynurenine generation. In mixed lymphocyte reaction system, different numbers of IDO-BMSCs mixed with responding cells (peripheral blood mononuclear cell isolated from 4-6-week-old LEWIS rats, as recipient) and stimulating cells (peripheral blood mononuclear cell isolated from BN rats, as donor), with the cells ratios of 1:5:5, 1:10:10, 1:50:50, and 1:100:100 (as experimental groups 1, 2, 3, and 4, respectively). Each reaction system was blocked by 1 mmol/L 1-methyl-tryptophan (1-MT) (IDO specific inhibitor). IDO-BMSCs mixed with responding cells (1:5) as the negative control group, responding cells mixed with stimulating cells (1:1) as positive control group; and IDO-BMSCs were cultured in RPMI 1640 medium alone as blank control group. MTT assay was used to detect the T lymphocytes proliferation at 5 days. Furthermore, GFP-BMSCs (group A), IDO-BMSCs (group B), and normal saline (group C) were infused via the tail vein of allogeneic limb transplantation rats, and graft survival time and rejection were observed in each group. ResultsThe IDO expression of BMSCs after genetic modification was higher than that before genetic modification. IDO-BMSCs could significantly improved kynurenine concentration in culture medium supernatant when compared with GFP-BMSCs (P<0.05). Before adding 1-MT, with the ratio of IDO-BMSCs to responding cells decreased, T lymphocytes proliferation rate increased in experimental groups 1, 2, and 3, showing significant differences between groups (P<0.05); there was no significant difference between experimental group 4 and the positive control group (P>0.05). After adding 1-MT, T lymphocytes proliferation rate was significantly higher than that before adding 1-MT in the other experimental groups (P<0.05) except experimental group 4 (P>0.05). In vivo, IDO-BMSCs could promote colonization in allograft, inhibit transplantation rejection, and prolong survival time of composite tissue allograft; the survival time of composite tissue allograft was (11.5±0.6) days in group A, (14.5±0.8) days in group B, and (9.0±0.3) days in group C, and it was significantly longer in group B than in groups A and C, and in group A than in group C (P<0.05). ConclusionIDO-BMSCs can promote the survival of allogeneic composite tissue grafts in rats, and its mechanism may involve in inhibition of T lymphocytes proliferation and promotion their own colonization in allograft.