west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "关节软骨" 41 results
  • REPAIR OF LARGE ARTICULAR CARTILAGE DEFECT OF HIP WITH ALLOGRAFT OF SKULL PERIOSTEUM

    It is very difficult to repair large articular cartilage defect of the hip. From May 1990 to April 1994, 47 hips in 42 patients of large articuler cartilage defects were repaired by allograft of skull periosteum. Among them, 14 cases, whose femoral heads were grade. IV necrosis, were given deep iliac circumflex artery pedicled iliac bone graft simultaneously. The skull periosteum had been treated by low tempreturel (-40 degrees C) before and kept in Nitrogen (-196 degrees C) till use. During the operation, the skull periosteum was sutured tightly to the femoral head and sticked to the accetabulum by medical ZT glue. Thirty eight hips in 34 patients were followed up for 2-6 years with an average of 3.4 years. According to the hip postoperative criteria of Wu Zhi-kang, 25 cases were excellent, 5 cases very good, 3 cases good and 1 case fair. The mean score increased from 6.4 before operation to 15.8 after operation. The results showed, in compare with autograft of periosteum for biological resurface of large articular defect, this method is free of donor-site morbidity. Skull periosteum allograft was effective for the treatment of large articular cartilage defects in hip.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • HISTOLOGICAL STUDY ON THE USING OF AUTOGENOUS COSTAL PERICHONDRIUM GRAFT TO REPAIR THE CARTILAGE OF CONDYLAR PROCESS OF MANDIBLE

    In order to observe the histological changes of the autogenous perichondrium graft from rib in the repair of injured articular cartilage of the condylar process of mandible, 50 rabbits were used, in which 15 were served as control. The articular cartilage with its subchondral bone were resected and an autogenous graft of costal perichondrium was sutured onto the raw surface of the condylar process, and in the controls, only the articular portion of the condylar process was resected without the application of autogenous costal perichondrium graft. The morphological changes of the newly formed cartilage during the process of its development were investigated by hiostological and autoradiog aphic techniques. The result revealed that 10 days after operation, the graft had increased in thickness and was richly populated form the proliferation of mesenchyme-like cells. Twenty to thirty days later, the chondrocytes were matured and the newly formed cartilage had covered the bony surface of mandibular condyle. At 60 days, the newly formed cartilagenous joint surface became glossy, and the morphology and arrangement of cells tended to be regular simulating the morphology of normal articular cartilage. From the experiment, it could be concluded that (1) The autogenous perichondrium graft placed on the condylar surface of mandible could form new articular cartilage which was similar in tissue morphology to the normal condylar cartilage. (2) The process of development of newly formed cartilage was similar to that of the normal cartilage. (3) The motion and loading on the joint could promote the formation of new cartilage and undergo biological reformation, gradually resulting in normal joint morphology. On this basis, the clinical application of autogenous perichondrium graft to repair injured cartilage of the condylar process of the mandible was feasible.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • REDIFFERENTIATION OF THE DEDIFFERENTIATED HUMAN ARTICULAR CHONDROCYTES BY THE BIOREACTOR CULTURING

    Objective To examine the biological characteristic changes in thededifferenciated human articular chondrocytes by the bioreactor culturing in vitvo.Methods The cartilage tissue was obtained from the joints of the adult human. The chondrocytes were isolated from the cartilage tissue with the type Ⅱ collagenase digestion(0.2%, 37℃, 3 h)and were cultured in DMEMF12 supplemented with 20% fetal bovine serum (FBS) with 1 ng/ml of TGF-β1and 5 ng/mlof FGF-2. After about 20 passages by the monolayer culture,the cells were then transferred to the bioreactor culturing of the rotational cell culture system (RCCS) for a 3-week sequence culture. The cell counting was performed with the platelet counter, and the doubling time for each passage of thecells was determined. The frozen section was stained with HE. The differentiated phenotype was evaluated by histochemistry or immunohistochemistry. Results When the monolayer culture was performed without any growth factors, the chondrocytes were rapidly proliferated within 3 passages (average doubling time, 59 h),but at the same time, dedifferentiation was also progressing rapidly. After the4th passage, most of the cells were dedifferenciated and the proliferation was decreased. With the growth factors (TGF-β1/FGF-2), the speed of the expansion was accelerated (average doubling time, 47 h), but the speed of the dedifferentiation was slowed down. After 20 passages were performed with the monolayer culture, the dedifferentiated chondrocytes could be redifferentiated when they were cultured for 3 weeks with RCCS. Then, the Safranine-O staining was bly positive for the cells, positive for aggrecan and collagen Ⅱ, but negative for collagen Ⅰ, with a wellregained phenotype. Conclusion The bioreactor culturing of the dedifferenciated human articular condrocytes can regain the differentiated phenotype and it is a useful method of obtaining the human articular chondrocytes in large amounts and in a differentiated phenotype in vitro.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • RELATIONSHIP BETWEEN SUBCHONDRAL BONE RECONSTRUCTION AND ARTICULAR CARTILAGE REGENERATION IN A RABBIT MODEL OF SPONTANEOUS OSTEOCHONDRAL REPAIR

    ObjectiveTo explore the relationship between subchondral bone reconstruction and articular cartilage regeneration in a rabbit model of spontaneous osteochondral repair. MethodsTwenty-four 6-month-old New Zealand white rabbits were included. The osteochondral defects (4 mm in diameter and 3 mm in depth) were created in the trochlear groove of the unilateral femur, which penetrated the subchondral bone without any treatment. The rabbits were sacrificed at 1, 4, 12, and 24 weeks after operation, respectively. The specimens were obtained for macroscopic, histological, and immunohistochemical observations. According to the International Cartilage Repair Society (ICRS) histological scoring, the effect of cartilage repair was assessed. The histomorphometrical parameters of subchondral bone were analyzed by micro-CT scan and reconstruction, and the relationship between cartilage repair and the histomorphometrical parameters of the subchondral bone were also analyzed. ResultsOsteochondral defects could be repaired spontaneously in rabbit model. With time, defect was gradually filled with repaired tissue, subchondral bone plate under the defect region gradually migrated upward. Bone mineral density, bone volume fraction, tissue mineralized density, trabecula number, and trabecula thickness were increased, while trabecula spacing was decreased. Significant difference was found in the other parameters between different time points (P<0.05) except for trabecula thickness between at 4 and 12 weeks after operation (P>0.05). Histological examination showed that fibrous repair was predominant with rare hyaline cartilage. With time, ICRS scores increased gradually, showing significant differences between other time points (P<0.05) except for between at 4 and 12 weeks after operation (P>0.05). Among the histomorphometrical parameters of subchondral bone, the trabecula spacing was negatively correlated with ICRS score (r=-0.584, P=0.039), and the other histomorphometrical parameters were positively correlated with ICRS score (r=0.680-0.891). ConclusionThere is relevant correlation as well as independent process between cartilage regeneration and subchondral bone reconstruction in the rabbit model of spontaneous osteochondral repair, and fast subchondral bone remodeling may adversely affect articular cartilage repair.

    Release date: Export PDF Favorites Scan
  • PRIMARY RESEARCH OF REPAIRING LARGE ARTICULAR CARTILAGE DEFECT BY TISSUE-ENGINEERING CARTILAGE IN RABBITS

    OBJECTIVE To investigate the feasibility of repairing the whole layer defects of tibial plateau by implanting tissue-engineering cartilage. METHODS: The chondrocytes of 2-week-old rabbits were cultured and transferred to the 3rd generation, and mixed with human placenta collagen-sponge. The whole layer defects of tibial plateau in adult rabbits were repaired by the tissue-engineering cartilage in the experimental group; the defects were left un-repaired in control group. The repair results of defects were observed after 4, 12 and 24 weeks. RESULTS: In experimental group, no obvious new cartilage formation was seen 4 weeks after operation; some new cartilage formation was found after 12 weeks. Histological observation showed that chondrocytes had irregular edge, honeycombing structure and that cartilage cavities formed around the chondrocytes. After 24 weeks, obvious new cartilage formation was found with smooth surface, and linked with the tissues around it, but the defect was not repaired completely; histological results showed that cartilage cavities formed and that cartilage matrix was stained positively for toluidine blue. In control group, the defect was not repaired. CONCLUSION: The tissue-engineering cartilage can repair the defects of the whole layer cartilage of tibial plateau in rabbits, it is feasible to repair the whole layer cartilage defects of tibial plateau by this method.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • SHAPE,PHENOTYPE AND GAP JUNCTION OF THE RABBIT CHONDROCYTES

    OBJECTIVE: To study the gap junction and phenotype of cultured chondrocyte of rabbit, and the gap junction between the chondrocytes in the same cartilage cavities in human femoral head articular cartilage. METHODS: CFDA-AM was added into the medium of the fifth passage of chondrocyte of rabbit in the 96-well plate. The fluorescent in spherical and fibroblast-like chondrocytes was detected separately. The recurrence of the fluorescent in accordant with time in 16 minutes was recorded after blanching the fluorescent with laser. And the fluorescent after blanching of chondrocyte in the cartilage cavities in the proliferative zone of articular cartilage of adult human femoral head was recorded, too. RESULTS: The average fluorescent of the single layer of the fibroblast-like chondrocyte was 83(ranged from 1 to 274), the highest was found in the spherical shaped cell (averaged 2,057, ranged from 340 to 3,538). The recurrence of the fluorescent after the blanching appeared only in the spherical chondrocyte, the gap junctions reappeared only in the spherical chondrocytes, as well as in the cells in the cartilage cavities in the articular cartilage of the human femoral head. CONCLUSION: The appearance of the gap junction is corresponded with the spherical shape, secretion of the cartilage matrix of the chondrocyte. There are gap junctions in the cells in the same cartilage cavities in the articular cartilage of the human femoral head, while no gap junctions in the isolated chondrocytes in the cartilage.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF THE EFFECT OF MOTION ON REPAIRING DEFECT OF ARTICULAR CARTILAGE FOLLOWING AUTOGENOUS PERIOSTEAL GRAFT

    In order to investigate the effect of motion on repairing articular cartilage defect following autogenous periosteal graft, sixty adult rabbits were divided randomly into three groups: out-cage motion (OCM), in-cage motion (ICM) and immobilization (IMM). A defect of the articular cartilage, 1 cm x 0.5 cm in size, was made in the patellar-groove of femur of each hind limb. Free autogenous periosteal graft from the proximal tibia was sutured on the base of the left defect, while the right limb was served as control. The animals were sacrificed at 4, 8 and 12 weeks, respectively, after operation. The regeneration of the cartilage implanted was observed through gross, histology, histochemical assay and electronic microscope. The influence of different amount of motion on the chondrogenesis from the periosteal implant was also compared. The result showed that the hyaline cartilage produced from periosteal implant could be capable to repair full-thickness of articular cartilage. From statistical study, there was significant difference between OCM and ICM groups (P lt; 0.05), ICM and IMM (P lt; 0.05) as well as OCM and IMM (P lt; 0.01). It was suggested that the periosteal graft was effective in repair of defect of articular cartilage and the amount of motion was important for chondrogenesis.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • EFFECT OF DIFFERENT CONCENTRATIONS OF DEXAMETHASONE ON APOPTOSIS AND EXPRESSION OF FAS/FASL IN HUMAN OSTEOARTHRITIS CHONDROCYTES

    Objective Corticosteroids can destroy the cartilage. To investigate the effect of dexamethasone (Dexa) on the apoptosis and expression of Fas/FasL of human articular chondrocytes (HACs) in vitro so as to explore the mechanism ofpro-apoptotic role of Dexa on HACs. Methods Following full agreement of patients, the cartilage specimens were collectedfrom the patients with osteoarthritis undergoing knee replacement. The second passage HACs were incubated in cell culture media containing 0.125, 1.25, 12.5, 25, and 50 μg/mL Dexa for 48 hours respectively to determine the optimal concentration of Dexa by MTT. The apoptosis was assessed by TMRE/Hoechst/Annexin V-FITC/7-AAD quadruple staining after culture for 0, 24, and 48 hours. The mRNA expressions of Fas and FasL were determined by real-time quantitative PCR after culture for 48 hours. The protein expressions of Fas and FasL were determined by immunohistochemistry staining analysis after culture for 24 hours and 48 hours. Results The cell inhibitory rate of 25 μg/mL Dexa was significantly higher than that of 50 μg/mL Dexa (P lt; 0.05), and there were significant differences when compared with that at other concentrations of Dexa (P lt; 0.05), so 25 μg/mL Dexa was appropriately selected as an optimal concentration of Dexa. The apoptotic rates of HACs were 5.8% ± 0.3%, 27.0% ± 2.6%, and 36.0% ± 3.1% at 0, 24, and 48 hours, respectively, in a time dependent manner (P lt; 0.05). The expressions of Fas mRNA were (8.93 ± 1.12) × 10—3 in the experimental group and (3.31 ± 0.37) × 10—3 in the control group, showing significant difference (P lt; 0.05). The expressions of FasL mRNA were (5.92 ± 0.66) × 10—3 in the experimental group and (2.31 ± 0.35) × 10—3in the control group, showing significant difference (P lt; 0.05). The expressions of Fas and FasL proteins showed an increasing tendency with time in the experimental group and the expressions were significantly higher than those in the control group after culture for 24 hours and 48 hours (P lt; 0.05). Conclusion Dexa can induce the apoptosis and significantly upregulate the apoptotic gene expression of Fas/FasL, which can provide the experimental evidence to further investigate the role of Fas/FasL signaling pathway in Dexa-induced HACs apoptosis.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • APPLIED ANATOMY OF THE PEDICLED PATELLA TRANSPOSITION FOR REPAIRE OF THE SUPERIOR ARTICULAR SURFACE OF THE MEDIAL TIBIAL CONDYLE

    To investigate the feasibility of using the pedicled patella for repaire of the superior articular surface of the medial tibial condyle, 37 lower limbs were studied by perfusion. In this series, there were 34 obsolete specimens and 3 fresh specimens of lower legs. Firstly, the vessels which supply to patella were observed by the methods of anatomy, section and casting mould. Then, the form and area of the patellar and tibial medial conylar articular surface were measured in 30 cases. The results showed: (1) the arteries supplied to patella formed a prepatellar arterial ring around patella, and the ring gave branches to patella; (2) medial inferior genicular artery and inferior patellar branches of the descending genicular arterial articular branch merge and acceed++ to prepatellar ring at inferior medial part of patella; (3) the articular surface of patella is similar to the superior articular surface of the tibial medial condyle on shape and area. It was concluded that the pedicled patella can be transposed to medial tibial condyle for repaire of the defect of the superior articular surface. The function of the knee can be reserved by this method.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • 骨关节炎疼痛神经机制及治疗

    骨关节炎(OA)是一种慢性退行性关节疾病,常见于中老年人,主要表现为关节损伤并引起关节剧烈疼痛,严重影响患者生存质量。OA首要的成因是关节软骨损伤,它会导致一系列损害,如剧烈疼痛、功能丧失等;其中剧烈疼痛是OA患者就医的原因。OA患者的治疗已成为重要的公共卫生问题。从膝关节OA疼痛机制角度出发,通过研究伤害性信息传递过程,探讨疼痛的相关神经机制,为疼痛治疗提供新思路。

    Release date:2016-09-08 09:16 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content