【Abstract】 Objective To investigate the protective effect of early motion on articular cartilage after joint allograft by performing a controlled trial between different post-operation strategies after joint allograft in an animal model. Methods Twenty hemi-knee joints were harvested from 10 6-month-old New Zealand white rabbits (male or female, weighing 2.5-3.0 kg); 10 hemi-knee joints by deep frozen treatment (donors) were transplanted to unilateral knee joints (recipients) of 10 6-month-old Chinchilla rabbits (male or female, weighing 2.5-3.0 kg), which were divided into early motion group (n=5) and sustained fixation group (n=5); and 10 hemi-knee joints were used as blank control (n=5) and frozen control (n=5). The articular cartilage of allogenic joints was detected by X-ray film, gross, and histology at 6 weeks after operation. Results Gross observation: no obvious limitation of joint movements was observed in early motion group, but obvious limitation in sustained fixation group. X-ray films: the bone ends between donor and recipient healed well with good paraposition and alignment on the operation day and 2 weeks after operation; at 6 weeks, angulation deformity was observed in early motion group of 3 rabbits, and paraposition and alignment were satisfactory in sustained fixation group. Histological observation: HE staining showed that the chondrocytes had normal quantity and morphology with few nuclear fragmentation and karyolysis in early motion group, but the quantity of chondrocytes sharply decreased with dissolved nuclei and numerous fibrous tissues in the cartilage matrix in sustained fixation group. The cell survival rate of the early motion group (49.66% ± 2.15%) was significantly higher than that of the sustained fixation group (20.68% ± 1.24%) (P lt; 0.05). Scanning electron microscopy observation: nuclear membrane was intact with chromatin condensation and edema of mitochondria and rough surfaced endoplasmic reticulum in early motion group, and that the membrane of chondrocyte vanished with blurring border between chondrocyte and matrix, rupture of nuclear membrane and the disappearance of chromatin and organelles could be found in sustained fixation group. Conclusion Early motion has protective effect on articular cartilage after joint allograft, but cannot completely prevent degeneration of the allogenic articular cartilage.
Objective To construct a new type of self-assembling peptide nanofiber scaffolds—RGDmx, and to study the cell compatibility of the new scaffolds and the proliferation and chondrogenic differentiation of precartilaginous stem cells(PSCs) in scaffolds. Methods PSCs were separated and purified from newborn Sprague Dawley rats by magnetic activated cell sorting and indentified by immunohistochemistry and immunofluorescent staining. The RGDmx were constructed by mixing KLD-12 and KLD-12-PRG at volume ratio of 1 ∶ 1. PSCs at passage 3 were seeded into the KLD-12 scaffold (control group) and RGDmx scaffold (experimental group). The proliferation of PSCs in 2 groups were observed with the method of cell counting kit (CCK) -8 after 1, 3, 7, and 14 days after culture. The RGDmx were constructed by mixing KLD-12-PRG and KLD-12 at different volume ratios of 0, 20%, 40%, 60%, 80%, and 100% and the prol iferation of PSCs was also observed. The complete chondrogenic medium (CCM) was used to induce chondrogenic differentiation of PSCs in different scaffolds. The differentiation of PSCs was observed by toluidine blue staining and RT-PCR assay. Results PSCs were separated and purified successfully, which were identified by immunohistochemistry and immunofluorescent staining methods. The results of CCK-8 showed that the absorbance (A) value in the experimental group increased gradually and reached the highest at 7 days; the A value in the experimental group was significantly higher than that in the control group at 7 days and 14 days (P lt; 0.05). Meanwhile, the A value in the RGDmx scaffold with a volume ratio of 40% was significantly higher than those in others (P lt; 0.05). After 14 days of induction culture with CCM, the toluidine blue staining results were positive in 2 groups; the results of RT-PCR showedthat the expression levels of collagen type II and the aggrecan in the experimental group were significantly higher than those in the control group (P lt; 0.05). Conclusion The self-assembling peptide nanofiber scaffold—RGDmx is an ideal scaffold for tissue engineer because it has good cell compatibility and more effective properties of promoting the differentiation of PSCs to chondrocytes.
Objective To establ ish a porcine model of articular full-thickness cartilage defect characterized byremaining cartilage calcified zone on femoral trochlea, so as to provide a considerable and comparative control group forinvestigating repair effects of tissue engineered scaffolds in articular cartilage defects with cartilage calcified zone remaining.Methods The full-thickness cartilage column defects (6 mm in diameter, 0.2-0.5 mm in depth) without damage on calcifiedcartilage zone were made on the femoral trochlea in 9 clean-grade 6-month-old Guizhou mini pigs by standard cartilage-defectmakingsuites. Microscopical observation was performed after modeling. Scanning were made by 3.0T MRI at 4 weeks. Thengeneral observation, stereomicroscope, and histological staining were used to observe cartilage repair. Results All animals wereal ive. No infection of incisions or patellar dislocations occurred; they were able to walk with partial weight-bearing immediatelyafter surgery and could move freely without limp at 1 week. Obvious signal discontinuity in trochlea and subchondral bone couldbe observed in MRI, without deep signal change in defects surrounding. Microscopical observation showed a few repair tissueand petechia at base of the defect with clear boundary. Nearly intact calcified zone of cartilage and zonal collapse of subchondralbone in defects could be observed with stereomicroscope. Under common microscope, no chondrocytes was found in defects,as well as negative staining of fast green-safranin O and alcian blue. Under polarized microscope, the bottom of defects werefilled with a l ittle of fibrous tissue presenting continuous and b l ight-refraction by sirius red staining. Conclusion Theanimal model of articular full-thickness cartilage defect on femoral trochlea by standard cartilage-defect-making suites can beapplied for the research of cartilage disease in early human osteoarthritis and function of calcified cartilage zone in pig.
Objective Corticosteroids can destroy the cartilage. To investigate the effect of dexamethasone (Dexa) on the apoptosis and expression of Fas/FasL of human articular chondrocytes (HACs) in vitro so as to explore the mechanism ofpro-apoptotic role of Dexa on HACs. Methods Following full agreement of patients, the cartilage specimens were collectedfrom the patients with osteoarthritis undergoing knee replacement. The second passage HACs were incubated in cell culture media containing 0.125, 1.25, 12.5, 25, and 50 μg/mL Dexa for 48 hours respectively to determine the optimal concentration of Dexa by MTT. The apoptosis was assessed by TMRE/Hoechst/Annexin V-FITC/7-AAD quadruple staining after culture for 0, 24, and 48 hours. The mRNA expressions of Fas and FasL were determined by real-time quantitative PCR after culture for 48 hours. The protein expressions of Fas and FasL were determined by immunohistochemistry staining analysis after culture for 24 hours and 48 hours. Results The cell inhibitory rate of 25 μg/mL Dexa was significantly higher than that of 50 μg/mL Dexa (P lt; 0.05), and there were significant differences when compared with that at other concentrations of Dexa (P lt; 0.05), so 25 μg/mL Dexa was appropriately selected as an optimal concentration of Dexa. The apoptotic rates of HACs were 5.8% ± 0.3%, 27.0% ± 2.6%, and 36.0% ± 3.1% at 0, 24, and 48 hours, respectively, in a time dependent manner (P lt; 0.05). The expressions of Fas mRNA were (8.93 ± 1.12) × 10—3 in the experimental group and (3.31 ± 0.37) × 10—3 in the control group, showing significant difference (P lt; 0.05). The expressions of FasL mRNA were (5.92 ± 0.66) × 10—3 in the experimental group and (2.31 ± 0.35) × 10—3in the control group, showing significant difference (P lt; 0.05). The expressions of Fas and FasL proteins showed an increasing tendency with time in the experimental group and the expressions were significantly higher than those in the control group after culture for 24 hours and 48 hours (P lt; 0.05). Conclusion Dexa can induce the apoptosis and significantly upregulate the apoptotic gene expression of Fas/FasL, which can provide the experimental evidence to further investigate the role of Fas/FasL signaling pathway in Dexa-induced HACs apoptosis.
Objective To construct recombinant lentiviral expression vectors of porcine transforming growth factor β1 (TGF-β1) gene and transfect bone marrow mesenchymal stem cells (BMSCs) so as to provide TGF-β1 gene-modified BMSCs for bone and cartilage tissue engineering. Methods The TGF-β1 cDNA was extracted and packed into lentiviral vector, and positive clones were identified by PCR and gene sequencing, then the virus titer was determined. BMSCs were isolated frombone marrow of the 2-month-old Bama miniature pigs (weighing 15 kg), and the 2nd and 3rd generations of BMSCs wereharvested for experiments. BMSCs were then transfected by TGF-β1 recombinant lentiviral vectors (TGF-β1 vector group)respectively at multi pl icity of infection (MOI) of 10, 50, 70, 100, and 150; then the effects of transfection were detected bylaser confocal microscope and Western blot was used to determine the optimal value of MOI. BMSCs transfected by empty vector (empty vector group) and non-transfected BMSCs (non-transfection group) were used as control group. RT-PCR, immunocytochemistry, and ELISA were performed to detect the expressions of TGF-β1 mRNA, TGF-β1 protein, and collagen type II. Results Successful construction of recombinant lentiviral vectors of porcine TGF-β1 gene was identified by PCR and gene sequencing, and BMSCs were successfully transfected by TGF-β1 recombinant lentiviral vectors. Green fluorescence was observed by laser confocal microscope. Western blot showed the optimal value of MOI was 70. The expression of TGF-β1 mRNA was significantly higher in TGF-β1 vector group than in empty vector group and non-transfection group (P lt; 0.05). Immunocytochemistry results revealed positive expression of TGF-β1 protein and collagen type II in BMSCs of TGF-β1 vector group, but negative expression in empty vector group and non-transfection group. At 21 days after transfection, high expression of TGF-β1 protein still could be detected by ELISA in TGF-β1 vector group. Conclusion TGF-β1 gene can be successfully transfected into BMSCs via lentiviral vectors, and long-term stable expression of TGF-β1 protein can be observed, prompting BMSCs differentiation into chondrocytes.
Objective Toreview theresearch progress of nucleus pulposus cells phenot ypic markers. Methods The domestic and international l iterature about nucleus pulposus cells phenotypic markers was reviewed extensively and summarized. Results Due to different biomechanical properties,nucleus pulposus cells and articular chondrocytes have differences in morphology and extracellular components such as the ratio of aggrecan to collagen type II α1. Nucleus pulposus cells can be identified by surface marker (CD24), gene markers (hypoxia inducible factor 1α, glucosetransporter protein 1, matrix metalloproteinase 2, vascular endothel ial growth factor A, etc), and various markers (keratin 19 and glypican 3,paired box 1, forkhead box F1 and integrin-binding sialoprotein, etc). Conclusion Nucleus pulposus cells and articular chondrocytes have different phenotypic markers, but nucleus pulposus cells are still lack of specific markers.
Objective Melatonin (MLT) can increase the expression of cartilage-derived growth factor and stimulate the synthesis of cartilage matrix. To investigate the prevention and treatment effects of MLT on damaged cartilage through observing the expressions of bone morphogenetic protein 2 (BMP-2) and interleukin 1β (IL-1β) in articular cartilage of the rats with osteoarthritis (OA). Methods Forty SPF 4-week-old male SD rats (weighing 120-150 g) were randomly divided into 4 groups (n=10): normal control group (group A), OA group (group B), OA/pinealectomy group (group C), and OA/ pinealectomy/MLT group (group D). The rats of group A served as a control without treatment. The rats of groups B, C, andD underwent left knee joint injection of 0.2 mL 4% papain solution 1 time every other day for 2 weeks for establ ishing OAmodel. Two weeks after papain injection, the rats of groups C and D were exposed to continuous l ight for 24 hours (intensity of illumination: 500 lx) for creating pinealectomy models. And at the next day after pinealectomy model establ ishing, the rats of group D were treated with intra-articular injections of 0.2 mL 20 mg/mL MLT solution 4 times a week for 4 weeks. At 1 week after last MLT injection, the venous blood samples were taken in groups A, B, and C to test the level of serum MLT by ELISA, respectively, and then the specimens of left cartilage of femoral condyle were harvested for macroscopic, histological, and immunohistochemical examinations in 4 groups. Results The OA and pinealectomy models of rats were successfully establ ished, and all rats survived. There were significant differences in the serum MLT level among groups A, B, and C, and among different time points at the same group (P lt; 0.05). In group A, articular cartilage surface was smooth and elastic, and chondrocytes arranged regularly. In groups B and C, articular cartilage surface was rough, cartilage defects and subchondral bone exposure were observed in some areas, and chondrocytes arranged irregularly. In group D, cartilage surface was more smooth than that in groups B and C, and the degrees of cartilage defect and subchondral bone exposure decreased with regular arrangment of chondrocytes. There were significant differences in Mankin scores and integral absorbance values among 4 groups (P lt; 0.05). Conclusion Exposure to continuous l ight can accelerate degeneration process of articular cartilage of OA rats. Injections of 0.2 mL MLT solution (20 mg/mL) by intra-articular for 4 weeks can inhibit the progress of cartilage defects. Upregulationof anabol ic factor of BMP-2 as well as down-regulation of catabol ic factors of IL-1β is associated with cartilage repairin the pathological features of OA.
Objective To review the recent research progress on relationshi p between subchondral bone and cartilage degeneration in osteoarthritis (OA), and to predict future research directions. Methods Recent l iteratures about the pathological changes of subchondral bone in OA were reviewed and analyzed in terms of biomechanics, bone remodel ingand biological factors. Results Subchondral bone sclerosis or softening was the result of osteoarthritis and also closely related to the occurrence and development of OA. Inhibiting the bone metabol ism of subchondral bone could slow the degeneration of articular cartilage. Conclusion For the treatment of OA, it is necessary to pay close attention to cartilage changes and the prevention of subchondral bone degeneration.
To study the effect of the repair of rabbit articular cartilage defects by the composite of chondrogenic induction of autologous MSCs and autologous “two-phase” bone matrix gelatin (BMG). Methods Twentyfour healthy adult New Zealand rabbits weighing 2 to 3 kg were divided into group A, B and C with 8 in each. Autologous MSCsderived from group A were cultured in vitro and observed under inverted phase contrast microscope when enough cells through trypsinization transferring in vitro were obtained. Then the growth curves of 1, 3 and 5 passage culture of MSCs were drawn. The 3rd passage MSCs were induced into chondrogenic differentiation by adding TGF-β1 (10 ng/mL), IGF-1 (10 ng/mL) and vitamin C (50 ng/mL) in vitro. At 8 days after induction, the features of chondrocytes were observed under inverted phase contrast microscope, and immunohistochemical staining and Mallory staining were made. Getting out part of the il ium of group A and B, according to the method of Urist, the “two-phase” BMG was acquired. Chondrogenic induction of autologous MSCs was inoculated into the corresponding BMG to set up a composite of cell-carrier, and then it was observed through scanning electric microscope after 3 days of culture. The model of articular cartilage defects of rabbits was made: in group A, autologous cell-carriers were implanted; in group B, there only existed autologous BMG; in group C, there was nothing. At 8, 12 weeks after operation, the gross, HE staining and immunohistochemical staining were made, and grading scales were evaluated according to Wakitani histological grading method. Results Features of MSCs were as follows: the shape of primary cells was shotspindled and of passage cells was long. As to the growth curves of 1, 3 and 5 passage culture of MSCs, passage cells grew slowly for 3 days after being passaged and went into log-growth during the 3rd and the 7th days and into plateau later, but the 3rd passage cells grew best. Observation of MSCs after chondrogenic induction was performed: the shape of cells was ell iptical and the effect of induction was verified by the positive results of collagen type II, S-100 and Mallory staining. Under scanning electricmicroscope, the structure of BMG was good and cells were observed growing in it well. As far as repair of articular cartilage defects are concerned at 8, 12 weeks after transplantation, the defects in group A were repaired by the hyl ine-l ike tissue and the structures of the cartilage surface and normal cartilage were in integrity, and immunohistochemical staining of collagen type II was positive, while those in group B and C were repaired by the fibrous-l ike tissues and the surfaces were irregular. In Wakitanni histological score, at 8 weeks after operation, group A was (3.50 ± 1.51) points, group B was (10.00 ± 1.41) points and group C was (12.00 ± 0.93) points; at 12 weeks, group A was (1.13 ± 0.99) points, group B was (8.38±1.30) points, and group C was (10.13 ± 1.64) points. At different time points, group A was significantly better than group B and C, showing significant differences (P lt; 0.05). Conclusion Induced autologous MSCs and the composite with autologous “two-phase” BMG have the function to repair articular cartilage defects, and they are better than autologous BMG transplanted only or nothing transplanted.
To explore the shape and structure of calcified cartilage zone and its interface between the non-calcified articular cartilage and subchondral bone plate. Methods The normal human condyles of femur (n=20) were obtained from the tissue bank donated by the residents, 10 males and 10 females, aged 17-45 years. The longitudinal and transverse paraffin sections were prepared by the routine method. The shape and structure of calcified cartilage zone were observed with theSafranin O/fast green and von kossa stain method. The interface conjunction among zones of cartilage was researched by SEM and the 3D structural model was establ ished by serial sections and model ing technique. Results Articular bone-cartilage safranin O/fast green staining showed that cartilage was stained red and subchondral bone was stained blue. The calcified cartilage zone was located between the tidemark and cement l ine. Von kossa staining showed that calcified cartilage zone was stained black and sharpness of structure border. Upper interface gomphosised tightly with the non-calcified cartilage by the wave shaped tidemark and lower interface anchored tightly with the subchondral bone by the uneven comb shaped cement l ine. The noncalcified cartilage zone was interlocked tightly in the manner of “ravine-engomphosis” by the calcified cartilage zone as observed under SEM, and the subchondral bone was anchored tightly in the manner of “comb-anchor” by the in the calcified cartilage zone 3D reconstruction model. Conclusion The calcified cartilage zone is an important structure in the articular cartilage. The articular cartilage is fixed firmly into subchondral bone plate by the distinctive conjunct interfaces of calcified cartilage zone.