ObjectiveThrough Sequenom iPEX system analyzed the genetic susceptibility in patients with Medial temporal lobe epilepsy (MTLE) which screening hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunit HCN1 and HCN2 single nucleotide polymorphism blood samples. MethodsPatients with epilepsy who were diagnosed MTLE in our epileptic clinic from December 2013 to April 2016 were included in this study, total 143 cases. Healthy volunteers who received annual physical checkups were recruited to serve as controls total 120 cases. The group enter criterion according to a 2004 ILAE report mainly:①12~55 years old; ②attack forms:partial onset seizures or secondary tonic-closure-clonus attack, a common onset symptoms such as stomach gas rise feeling, sense of deja vu, automatism etc.; ③with or without febrile convulsions history; ④EEG displayed unilateral or bilateral temporal spike, sharp slow wave, or their spines slow-wave sample such as epilepsy wave; ⑤head MRI displayed hippocampal sclerosis. Exclusion criteria:①tumors; ②head MRI display focal cortical dysplasia (FCD). Using sequenom iPLEX technology platform to detect all the object of study of gene polymorphism sites total ten sites. All statistical tests were conducted using SPSS version 16.0. Resultsall sites fulfilled Hardy-Weinberg genetic balance. The results showed that HCN1 rs17344896 C/T, rs6451973 A/G and HCN2 rs12977194 A/G three polypeptide sites associated with MTLE, with statistical differences(P < 0.05). ConclusionHCN1 and HCN2 genetic suscepibility is one of possible mechanism of MTLE.
Objective To identify the most consistent and replicable characteristics of altered spontaneous brain activity in mesial temporal lobe epilepsy patients with unilateral hippocampal sclerosis (MTLE-HS). Methods A systematic literature search was performed in PubMed, Embase, The Cochrane Library, China National Knowledge Infrastructure, Wanfang, and CQVIP databases, to identify eligible whole-brain resting state functional magnetic resonance imaging studies that had measured differences in amplitude of low-frequency fluctuations or fractional amplitude of low-frequency fluctuations between patients with MTLE-HS and healthy controls from January 2000 to January 2019. After literature screening and data extraction, Anisotropic Effect-Size Signed Differential Mapping software was used for voxel based pooled meta-analysis. Results Nine datasets from six studies were finally included, which contained 207 MTLE-HS patients and 239 healthy controls. The results demonstrated that, compared with the healthy controls, the MTLE-HS patients showed increased spontaneous brain activity in right hippocampus and parahippocampal gyrus, right superior temporal gyrus, left cingulate gyrus, right fusiform gyrus, and right inferior temporal gyrus; while decreased spontaneous brain activity in left superior frontal gyrus, right angular gyrus, right middle frontal gyrus, left inferior parietal lobule, left precuneus, and right cerebellum (P<0.005, cluster extent≥10). Conclusion The current meta-analysis demonstrates that patients with MTLE-HS show increased spontaneous brain activity in lateral and mesial temporal regions and decreased spontaneous brain activity in default mode network, which preliminarily clarifies the characteristics of altered spontaneous brain activity in patients with MTLE-HS.