west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "刘文洁" 2 results
  • 23G微创玻璃体切割手术巩膜切口的超声生物显微镜观察

    Release date:2016-09-02 05:41 Export PDF Favorites Scan
  • CT and MRI fusion based on generative adversarial network and convolutional neural networks under image enhancement

    Aiming at the problems of missing important features, inconspicuous details and unclear textures in the fusion of multimodal medical images, this paper proposes a method of computed tomography (CT) image and magnetic resonance imaging (MRI) image fusion using generative adversarial network (GAN) and convolutional neural network (CNN) under image enhancement. The generator aimed at high-frequency feature images and used double discriminators to target the fusion images after inverse transform; Then high-frequency feature images were fused by trained GAN model, and low-frequency feature images were fused by CNN pre-training model based on transfer learning. Experimental results showed that, compared with the current advanced fusion algorithm, the proposed method had more abundant texture details and clearer contour edge information in subjective representation. In the evaluation of objective indicators, QAB/F, information entropy (IE), spatial frequency (SF), structural similarity (SSIM), mutual information (MI) and visual information fidelity for fusion (VIFF) were 2.0%, 6.3%, 7.0%, 5.5%, 9.0% and 3.3% higher than the best test results, respectively. The fused image can be effectively applied to medical diagnosis to further improve the diagnostic efficiency.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content