Objective To review the research progress of mechanism and prevention of peritendinous adhesions. Methods Recent literature about peritendinous adhesions was reviewed, and the results from experiments about the mechanism and prevention of peritendinous adhesions were analyzed. Results The molecular mechanism of peritendinous adhesions is related to overexpressions of transforming growth factor β1, early growth response protein 1, matrix metallopeptidase 9, and so on. The present methods of prevention of peritendinous adhesions include drugs, barrier, optimizing rehabilitation, gene therapy, and so on. These methods have achieved good results in experiments, but the clinical applications have not been confirmed yet. Conclusion It is necessary to pay more attention to the research of mechanism of peritendinous adhesions and methods of its prevention and subsequently to convert them into clinical applications, which is significant to the prevention of peritendinous adhesions in the future.
ObjectiveTo review the current progress of treatment of cubital tunnel syndrome (CTS). MethodsRecent relevant literature on the treatment of CTS was extensively reviewed and summarized. ResultsCTS is one of the most common peripheral nerve compression diseases.The clinical presentations of CTS consist of numbness and tingling in the ring and small fingers of the hand,pain in the elbow and sensory change following long-time elbow bending.Severe symptoms such as weakness or atrophy of intrinsic muscles of the hand and claw hand deformity may occur.The etiology of CTS is ulnar nerve compression caused by morphological abnormalities and nerve paralysis after elbow trauma.CTS can be treated by nonsurgical methods and surgery.Surgical options include in situ decompression,ulnar nerve transposition,medial epicondylectomy,and endoscopic release. ConclusionThere are multiple options to treat CTS,but the indication and effectiveness of each treatment are still controversial.Further studies are required to form a generally accepted treatment system.
Objective To discuss the feasibil ity of repairing soft tissue defects of lower extremity with a distally based posterior tibial artery perforator cross-bridge flap or a distally based peroneal artery perforator cross-bridge flap. Methods Between August 2007 and February 2010, 15 patients with soft tissue defect of the legs or feet were treated. There were 14 males and 1 female with a mean age of 33.9 years (range, 25-48 years). The injury causes included traffic accident in 8 cases, crush injury by machine in 4 cases, and crush injury by heavy weights in 3 cases. There was a scar (22 cm × 8 cm atsize) left on the ankle after the skin graft in 1 patient (after 35 months of traffic accident). And in the other 14 patients, the defect locations were the ankle in 1 case, the upper part of the lower leg in 1 case, and the lower part of the lower leg in 12 cases; the defect sizes ranged from 8 cm × 6 cm to 26 cm × 15 cm; the mean interval from injury to admission was 14.8 days (range, 4-28 days). Defects were repaired with distally based posterior tibial artery perforator cross-bridge flaps in 9 cases and distally based peroneal artery perforator cross-bridge flaps in 6 cases, and the flap sizes ranged from 10 cm × 8 cm to 28 cm × 17 cm. The donor sites were sutured directly, but a spl it-thickness skin graft was used in the middle part. The pedicles of all flaps were cut at 5-6 weeks postoperatively. Results Distal mild congestion and partial necrosis at the edge of the skin flap occurred in 2 cases and were cured after dressing change, and the other flaps survived. After cutting the pedicles, all flaps survived, and wounds of recipient sites healed by first intention. Incisions of the donor sites healed by first intention, and skin graft survived. Fifteen patients were followed up 7-35 months with an average of 19.5 months. The color and texture of the flaps were similar to these of the reci pient site. According to American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system, the mean score was 87.3 (range, 81-92). Conclusion A distally based posterior tibial artery perforator cross-bridge flap or a distally based peronealartery perforator cross-bridge flap is an optimal alternative for the reconstruction of the serious tissue defect of ontralateral leg or foot because of no microvascular anastomosis necessary, low vascular crisis risk, and high survival rate.