ObjectiveTo investigate the significant genes in Mesio-temporal lobe epilepsy (MTLE) and explore the molecular mechanism of MTLE.MethodsThe microarray data of MTLE were downloaded from the Gene Expression Omnibus (GEO) database and analyzed by bioinformatics methods using GEO2R tool, Venny2.1.0, FUNRICH and Cytoscape software, DAVID and String databases.ResultsOf all the 331 differentially expressed genes(DEGs), 46 genes were down-regulated and 285 genes were up-regulated in dataset GSE88992; Furthermore, the core module genes were identified from those DEGs, which were expressed mostly in plasma membrane and extracellular space; The major molecular funtion were chemokine activity, cytokine activity and chemokine receptor binding; The main biological pathways involved neutrophil chemotaxis, inflammatory response and positive regulation of ERK1 and ERK2 cascade; The KEGG analysis showed DEGs enriched in Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Complement and coagulation cascades. In addition, ten hub genes (Il6, Fos, Stat3, Ptgs2, Ccl2, Timp1, Cd44, Icam1, Atf3, Cxcl1) were found to significantly express in the MTLE.ConclusionThe pathogenesis of MTLE involves multiple genes, and multiple cell signaling pathways. Thus investigations of these genes may provide valuable insights into the mechanism of MTLE.
ObjectiveTo determine the outcome of antiepileptic drugs (AEDs) withdrawal in patients who had been seizure-free for more than two years. MethodsPatients with epilepsy who had been seizure-free for at least two years and decided to stop AEDs therapy gradually were checked on every two months for seizure relapse. The inclusion criteria were:①diagnosis of epilepsy, defined as at least two unprovoked seizures at least 24 hours apart; ②patients remained seizure-free for at least 24 consecutive months during AEDs therapy; ③patients expressed a desire to discontinue AEDs therapy gradually and agreed to return for regular follow-ups; and④electroencephalogram (EEG) showed no epileptic discharge. The time to a seizure relapse and predictive factors were analyzed by survival methods, including sex; age at seizure onset; number of episodes; seizure-free period before AEDs withdrawal; duration of follow-up after AEDs withdrawal; AEDs tapering off period (taper period); results from brain MRI; EEG before seizure-free; EEG before drug withdrawal; seizure type (classified as generalized, partial, or multiple types based on history); the number of AEDs administered for long-term seizure control. A log-rank test was used for univariate analysis, and a Cox proportional hazard model was used for multivariate analysis. ResultsSixty-eight patients (39 male, 29 female) were admithed. The relapsed rate was 23.5%. Univariate analysis and multivariate Cox regression analysis indicated that multiple AEDs, hippocampal sclerosis and withdrawal time were significantly correlated with seizure recurrence and those were significant independent predictive factors, with hazard ratio were 0.861, 2.223 and 2.137 respectively. ConclusionsThe relapsed rate in our study was similar to other studies. Distinguishing variables, such as multiple AEDs, hippocampal sclerosis and withdrawal time, need to be considered when decide to withdraw. Therefore, our recommendation is that after two years of being seizure-free, patients could consider withdrawal unless they are hippocampal sclerosis patients.
ObjectiveThrough Sequenom iPEX system analyzed the genetic susceptibility in patients with Medial temporal lobe epilepsy (MTLE) which screening hyperpolarization-activated cyclic nucleotide gated channel (HCN) subunit HCN1 and HCN2 single nucleotide polymorphism blood samples. MethodsPatients with epilepsy who were diagnosed MTLE in our epileptic clinic from December 2013 to April 2016 were included in this study, total 143 cases. Healthy volunteers who received annual physical checkups were recruited to serve as controls total 120 cases. The group enter criterion according to a 2004 ILAE report mainly:①12~55 years old; ②attack forms:partial onset seizures or secondary tonic-closure-clonus attack, a common onset symptoms such as stomach gas rise feeling, sense of deja vu, automatism etc.; ③with or without febrile convulsions history; ④EEG displayed unilateral or bilateral temporal spike, sharp slow wave, or their spines slow-wave sample such as epilepsy wave; ⑤head MRI displayed hippocampal sclerosis. Exclusion criteria:①tumors; ②head MRI display focal cortical dysplasia (FCD). Using sequenom iPLEX technology platform to detect all the object of study of gene polymorphism sites total ten sites. All statistical tests were conducted using SPSS version 16.0. Resultsall sites fulfilled Hardy-Weinberg genetic balance. The results showed that HCN1 rs17344896 C/T, rs6451973 A/G and HCN2 rs12977194 A/G three polypeptide sites associated with MTLE, with statistical differences(P < 0.05). ConclusionHCN1 and HCN2 genetic suscepibility is one of possible mechanism of MTLE.
Objectives The purpose of this study is to verify the phenytoin-resistant mesial temporal lobe epilepsy (MTLE) induced by Li-pilocarpine and screened by antiepilepsy drug (AEDs). Methods The rats with MTLE were induced by Li-pilocarpine, which were screened by effect of phenytoin treatment monitored by vedio-EEG. The living microdialysis technology was used for verification of drug concentration in brain of drug-resistant and drug-responsive rat model, and the P-glycoprotein expression was detected by immunohistochemical method. Results Sixteen rats with chronic MTLE were successfully induced in total 30 rats, among which, 6 drug-resistant rats with MTLE were screened. The brain/plasma ratio of area under the curve in drug-resistant rats was significantly lower than that of drug-responsive rats (0.15±0.03 vs. 0.28±0.05, P<0.05). In addition, the P-glycoprotein expression in brain of drug-responsive rats was obviously higher than that of drug-responsive rats (P<0.05). Conclusions The low concentration of phenytoin in drug-resistant rat model with MTLE was verified that might be related to the over-expressed P-glycoprotein in brain.
ObjectiveIn order to evaluate that whether the P-glycoprotein-inhibitor verapamil (VPM) could effect the distribution of antiepileptic drug phenytoin (PHT) in a rat model of mesial temporal lobe epilepsy (MTLE).MethodsThe rat models of MTLE were induced by li-pilocarpine and were randomly divided into two groups (PHT group and VPM+PHT treatment group) to compare the PHT distribution in brain, liver and kidney. Brain dialysate samples were collected by microdialysis technology. And the analysis of samples for PHT concentration was performed by high performance liquid chromatography (HPLC). The comparisons were carried out by t test (or Wilcoxon test).ResultsIn VPM+PHT treatment group, 4 out of 9 rats were dead within 30 minutes after drug administration. The significantly decreased area under the curve (AUC) ratio of brain/plasma in VPM+PHT group was 0.11±0.06 when compared with PHT group 0.21±0.02 (t=3.237, P=0.025), while there were no significant differences in ratios of liver/plasma [PHT (1.12±0.37) vs. VPM+PHT (0.99±0.27), Z=−0.490, P=0.624] and kidney/plasma [PHT (0.74±0.16) vs. VPM+PHT (0.49±0.26), t=1.872, P=0.103] between two groups.ConclusionsThe P-glycoprotein-inhibitor VPM significantly decreased PHT level in brain of rat with MTLE.
ObjectiveTo lay a theoretical foundation for the research of regulation of Hyperpolarization activated cyclic nucleotide gated channel 1 (HCN1) gene expression and its involvement in the pathogenesis of Mesio-temporal lobe epilepsy (MTLE) and other related diseases, the bioinformatics methods were used to analyze sequence characteristic, transcription factors and their binding sites in the promoter region of human HCN1 gene, and the physicochemical properties, signal peptides, hydrophobicity, transmembrane regions, protein structure, interacting proteins and functions of HCN1 proteins.MethodBiological software and website, such as Protparam, Protscale, MHMM, SignalP 5.0, NetPhos 3.1, Swiss-Model, Promoter 2.0, AliBaba2.1 and EMBOSS were used to analyze and predict physicochemical properties, structural functions, localized expression, phylogenetic relationships and protein interactions with human HCN1 protein, and promoter, CpG island and transcription factor characteristics of HCN1 gene.ResultsThe evolutionary analysis of HCN1 protein showed that the genetic distance between human and Pongo abelii was the smallest, indicating the closest genetic relationship between human and Pongo abelii. Human HCN1 protein was an unstable hydrophilic protein located on the plasma membrane, which contained two transmembrane structure. However, the predicted results showed that there was no signal peptide and nuclear localization sequence in this protein. The secondary structure of HCN1 protein was mostly random coil and alpha helix, and it contained multiple potential phosphorylation sites. The ontology analysis results of HCN1 protein were showed as follows. The cellular component of HCN1 protein was located in the plasma membrane (GO:0005886); the molecular functionof HCN1 protein were cyclic adenosine monophosphate binding (GO:0030552) and voltage-gated ion channel activity (GO:0005244); the biological process of this protein were reacting to cAMP (GO:0071320) and transmembrane transport of potassium (GO:0071805). The analysis results of String database showed that the proteins that had close interaction with human HCN1 protein mainly included the ten proteins (HCN2, HCN4, PEX5L, MARCH7, KCTD3, GNAT3, SHKBP1, KCNQ2, FLNA and NEDD4L). These proteins were mainly involved in regulation of ion transport and transmembrane transport of potassium (GO:0071805). The HCN1 gene was located at 5p12 and contained 8 exons and 7 introns.There were at least three promoter regions in the nucleotide sequence of 2 000 bp from the upstream of the HCN1 gene to the 5 'flanks, and contained a 158 bp CpG island in the promoter region and one TATA boxes and one CAAT boxes in the 5' regulation region ofHCN1 gene; niceteen transcription factors, including NF-κB, NF-1, AP-1, TBP, IRF-1, c-Ets-1, Elf-1, HNF-3, HNF-1, YY1, GATA-1, RXR-α, GR, AP-2αA, ENKTF-1, C/EBPβ, C/EBPα, c-Fos and c-Jun, binding in the promoter region of the HCN1 gene were predicted by both softwares (AliBaba2.1 and PROMO2).ConclusionThe analysis results provide important information for further studies on the role of HCN1. Bioinformatics analysis of the promoter region can improve the research efficiency of gene promoters, and provide theoretical basis for subsequent experiments to construct expression vectors of HCN1 gene promoters and identify their functions.
ObjectiveTo investigate the effect of valproic acid (VPA) coadministred with lamotrigine (LTG) on epileptic patients' ammonia and evaluate the influencing factors of elevated blood ammonia in epileptic patients.MethodsA retrospective analysis of clinical data from 146 patients with epilepsy (including newly diagnosed epilepsy patients) who were admitted to the Seventh Affiliated Hospital of Sun Yat-Sen University from May 2018 to April 2020 was performed. The patients were divided into no antiepileptic drug group (group A), VPA group only (group B) and VPA combined LTG group (group C), and the concentration of the blood ammonia of the patients were analyzed.ResultThe average ammonia levels in groups A, B and C were (18.14±1.19), (25.89±0.87) and (36.60±4.34) μmol/L, and the incidence of blood ammonia higher than normal were 2.77%, 8.89% and 20.0%, respectively.The difference between group B and group A and group C were statistically significant (P<0.05), the difference between group C and group A was statistically significant (P<0.05).ConclusionPatients with epilepsy who use VPA were at increased risk of blood ammonia and LTG can increase ammonia in epileptic patients who were treated with VPA. So when VPA was combined with LTG, more attention should be paid to ammonia of patient to avoid adverse reactions.