Purpose To study the possibility of prevention of proliferative vitreoretinopathy(PVR) by transduction of exogenous gene in vivo. Methods PVR model of rabbits was induced by intravitreal injection of fibroblasts.beta;-galactosidase (lacZ) gene as a reporter gene was transfered into the vitreous of PVR model eyes mediated by retroviral vector, and the expression of the gene in eye tissues was determined . Gene transfection was done on the 6th day after fibroblasts injection,and the dosage of intravitreal injection of reporter gene was 0.1ml PLXSN/lacZ serum-free supernatant (1.1times;106 cfu/ml). Results lacZ gene expression was seen in proliferative membranes after gene transfection, and the expression was located maily at the surface of PVR membrane.The reporter gene expression lasted at least more than 30 days.No expression was found in retinal tissues. Conclusions Retrovirus mediated gene can be directionally transducted in PVR membrane,and might possess the feasibility of gene therapy for PVR. (Chin J Ocul Fundus Dis, 2001,17:224-226)
Objective To observe the permeability and stability of the transfection of antisense oligonucleotide (ASODN) hybridized epidermal growth factor receptor (EGFR) to retinal glial cells (RG).Methods Phosphorothioate and unmodified EGFR ASODN conjugated with 5′-isothioc yanate (5′-FITC) were encapsulated with or without lipofectin, and then added into human retinal glial cells culture media. The cellular permeability and stability of the transfection were observed by fluorescence microscopy in fixed cells.Results In the absence of lipofectin, phosphorothioate and unmodified EGFR ASODN were found in a few RG cells at 30 minutes, and in about 50% RG cells at 4 hours. Phosphorothioate EGFR ASODN were kept in RG cells for 3-4 hours and disappeared at about 8 hours. In the presence of lipofectin, phosphoro thioate and unmodified EGFR ASODN were found in a few RG cells at 15 minutes and about 70%-80% RG cells at 4 hours. Phosphorothioate EGFR ASODN were kept in cells for 10-12 hours, and phosphorothioate and unmodified EGFR ASODN were disapp eared at about 14 hours and 4 hours respectively.Conclusion 5′-FITC EGFR ASODN encapsulated with lipofectin could enter RG cells and express stably in RG cells. (Chin J Ocul Fundus Dis,2003,19:52-54)
OBJECTIVE: To review the research progress and medical application of nano-materials. METHODS: The literature review and comprehensive analysis, methods were used in this study. RESULTS: The Nanotechnology is a typical crossing knowledge. It could be extensively applied in the fields of novel biomaterials, effective transmission of bioactive factor; the detection of functions for all vital organ systems, vascular circulation condition, the control of repair of burn trauma wounds will be monitored by the varied methods of nano technology combined with molecular biological engineering. CONCLUSION: The application of Nanotechnology will play important roles in clinical medicine, wound repair and basic research for the traditional Chinese medicine.
The application of gene therapy in ocular diseases is gradually expanding from mono-gene inherited diseases to multigene, multifactorial, common and chronic diseases. This emerging therapeutic approach is still in the early exploratory stage of treating diseases, and the expected benefits and risks remain highly uncertain. In the delivery process of gene therapy drugs, viral vector is currently one of the most mature and widely used vectors. The occurrence of vector-associated immunity will affect the short-term and long-term effects of gene therapy, and even cause permanent and serious damage to visual function. Therefore, gene therapy vector-associated immunity is the focus and challenge for the safety and long-term efficacy of gene therapy. During the perioperative and follow-up of gene therapy, attention should be paid to the monitoring of vector-associated immune inflammation, and appropriate measures should be taken to deal with the corresponding immune response, so as to achieve the best visual benefits for patients.
The rapid development of genetic diagnosis-related technologies has paved a wide road for gene therapy. Different gene therapy clinical trials for retinal disorders, including gene-replacement therapy, anti-neovascular gene therapy and opotogenetic gene therapy, have been developed and achieved fruitful results, which have gradually confirmed the efficacy and safety of adeno-associated virus (AAV)-mediated gene therapy for recessive retinal diseases. In recent years, novel gene editing technologies also shows great potential to treat dominant retinal disease, or recessive retinal disease when the therapeutic gene fragments are too long to fit into the AAV vectors. These results make it possible for most of the patients with inherited retinal diseases to be treated by the safe and effective AAV-mediated gene therapy, which will also benefit Chinese patients soon.
ObjectiveTo predict as well as bioinformatically analyze the target genes of has-miR-451. MethodsmiRBase, miRanda, TargetScan and PicTar were used to predict the target genes of hsa-miRNA-451. The functions of the target genes were demonstrated by Gene Ontology and pathway enrichment analysis. P < 0.05 was set as statistically significant. Results18 target spots of hsa-miRNA-451 were predicted by 3 databases or prediction software at least. The functions of the target genes were enriched in proliferation and development of epithelial cells and regulation of kinase activity (P < 0.05). Pathway analysis showed that transforming growth factor-beta signaling pathway, mitogen-activated protein kinase signaling pathway, epidermal growth factor signaling pathway, Wnt signaling pathway and mammalian target of rapamycin signaling pathway were significantly enriched (P < 0.05). Conclusionhsa-miRNA-451 might be involved in various signaling pathways related to proliferation and development of epithelial cells.
Objective To investigate the inhibitive effect of E2F decoy oligodeoxynucleotides (E2F decoy ODNs) on cultured human retinal pigment epithelial (HRPE) cells.Methods E2F decoy ODNs or scramble decoy ODNs at varied concentrations were put into the HRPE cells mediated by lipofectamineTM2000. The proliferative activity of HRPE was detected by methythiazolyl-terazollium assay, and the competitive combinative activity of E2F decoy ODNs and transcription factor E2F was detected by electrophoresis mobility-shift assay. Results The proliferation of HRPE was inhibited markedly by E2F decoy ODNs at the concentration of 0.2 μmol/L (P=0.002) in a dose-dependent manner but not by scrambled decoy. The results of electrophoresis mobility-shift assay showed that the combinative activity of transcription factor E2F was abolished completely by E2F decoy ODNs. Conclusions E2F decoy ODNs may sequence-specifically inhibit the combinative activity of transcripti on factor E2F,and inhibit the proliferation of HRPE cells.(Chin J Ocul Fundus Dis,2004,20:182-185)
Retinoblastoma (RB) is the most common intraocular malignant tumor in children. With advanced clinical technologies there are more and more methods available to treat retinoblastoma, and make it is possible to delivery individualized protocol combined traditional treatments with modern regimen to patients now. In order to improve the survival rate and the life quality of RB patients in China, it is very important to make a suitable system of standardized therapy based on results from developed countries and health policies of our own country.