west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "基因芯片" 23 results
  • Interferon-related gene array in predicting the efficacy of interferon therapy in chronic hepatitis B

    This study aims to clarify host factors of IFN treatment in the treatment of chronic hepatitis B (CHB) patients by screening the differentially expressed genes of IFN pathway CHB patients with different response to interferon (IFN) therapy. Three cases were randomly selected in IFN-responding CHB patients (Rs), non-responding CHB patients (NRs) and healthy participants, respectively. The human type I IFN response RT2 profiler PCR array was used to detect the expression levels of IFN-related genes in peripheral blood monocytes (PBMCs) from healthy participants and CHB patients before and after Peg-IFN-α 2a treatment. The results showed that more differentially expressed genes appeared in Rs group than NRs group after IFN treatment. Comparing with healthy participants, IFNG, IL7R, IRF1, and IRF8 were downregulated in both Rs and NRs group before IFN treatment; CXCL10, IFIT1, and IFITM1 were upregulated in the Rs; IL13RA1 and IFI35 were upregulated in the NRs, while IFRD2, IL11RA, IL4R, IRF3, IRF4, PYHIN1, and ADAR were downregulated. The expression of IL15, IFI35 and IFI44 was downregulated by 4.09 (t = 10.58, P < 0.001), 5.59 (t = 3.37, P = 0.028) and 10.83 (t = 2.8, P = 0.049) fold in the Rs group compared with the NRs group, respectively. In conclusion, IFN-response-related gene array is able to evaluate IFN treatment response by detecting IFN-related genes levels in PBMC. High expression of CXCL10, IFIT1 and IFITM1 before treatment may suggest satisfied IFN efficacy, while high expression of IL13RA1, IL15, IFI35 and IFI44 molecules and low expression of IFRD2, IL11RA, IL4R, IRF3, IRF4, PYHIN1 and ADAR molecules may be associated with poor IFN efficacy.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Difference of Gene Expression Profile of Bone Marrow Mesenchymal Stem Cells from Coronary Heart Disease Patient with or without Diabetes Mellitus

    Abstract: Objective To study the difference of gene expression profile of bone marrow mesenchymal stem cells (MSCs) cultured in vitro from coronary heart disease patient with or without diabetes mellitus by Affymetrix Gene array. Methods One male patient at age of 53 years with coronary heart disease and diabetes mellitus was included in this study with the diagnosis of coronary heart disease and type 2 diabetes mellitus. Another male patient at age of 51 years with coronary heart disease without diabetes mellitus was also included in this study with the diagnosis of coronary heart disease. MSCs of the two patients were isolated and purified by the methods of density gradient centrifugation with lymphocyte separation medium for human and adherent filtration. The MSCs expression profile of cytokines and signal transduction genes were examined by Affymetrix gene array. Results There were 27 functional protein genes expression in the patient with coronary heart disease and diabetes mellitus relating to cell apoptosis, cytokine, and signal transduction. Among them, the expression of 13 functional genes, including TNFRSF10B, TNFRSF21, NGF, CAV2, ITGA8, TNS1, ITGA2, AKT3, MBP, MAP2, INHBA, FST, PLA2G5, increased significantly in the patient with coronary heart disease and diabetes mellitus. However, the expression level of 14 genes, including EPR1, BIRC5, HELLS, BCL2, HGF, CASP1, SEPP1, ITGA9, MAP2K6, RUNX3, TGFBR2, RUNX2, CTNNB1, CDC42, decreased significantly. Conclusion The gene expression profile of bone marrow MSCs from coronary heart disease patient with diabetes mellitus is significantly different from the patient with coronary heart disease patient without diabetes mellitus.

    Release date:2016-08-30 05:50 Export PDF Favorites Scan
  • Identification of Candidate Diagnostic Tumor Markers for Human Hepatocellular Carcinoma Using Genechip Technology

    Objective To identify genes associated with hepatocellular carcinoma (HCC) as candidate diagnostic markers in a genome-wide scale. Methods The gene expression profiles of 40 pairs of HCC tumor tissue and peripheral non-tumorous liver tissue were analyzed by using gene chip technology.The gene chips were fabricated at the National Cancer Institute (NCI). Each gene chip contained 9 180 genes. The fluorescent targets were prepared by a direct labeling approach using two kinds of fluorescences as following: 100 μg of total RNA from non-cancerous liver tissue was labeled with Cy3-dUTP and 200 μg of total RNA from HCC was labeled with Cy5-dUTP. The targets were mixed together and hybridized with genes on the gene chips. Unsupervised hierarchical clustering analysis was done by CLUSTER and TREEVIEW software using median centered correlation and complete linkage. Results A total of 10 genes were found up-regulated in over 80% of primary tumors comparing with that of their corresponding non-tumorous liver tissues at a two-fold filter with an unsupervised hierarchical clustering algorithm, including protocadherin-alpha 9, ESTs, Homo sapiens cDNA FLJ, KPNA2, RPS20, SNRPE, CDKN2A, UBD, MDK and ANXA2.Conclusion These genes are supposed to be candidates for the diagnosis of HCC. Further investigation of these genes in a large scale of patients with HCC and patients with non-malignant hepatic diseases will be needed to disclose whether they could be used clinically as novel diagnostic tumor markers for HCC.

    Release date:2016-08-28 04:08 Export PDF Favorites Scan
  • Study of Influence of IGF-1 on Angiogenesis by Using IGF-1 Deficient Mice Breast Cancer Models

    Objective To determine the effect of insulin-like growth factor-1 (IGF-1) on angiogenesis in mouse breast cancer model of lower and normal serum IGF-1 levels after using angiogenesis inhibitor ginsenoside Rg3 (GS Rg3). Methods The breast cancer models were established in control mice and liver specific IGF-1 deficient (LID) mice by feeding DMBA and were treated with GS Rg3. Vascular endothelial growth factor (VEGF) and F8-RAg were detected by immunohistochemical method in breast cancer tissues. IGF-1 gene and angiogenesis relating genes were detected by gene chip in breast cancer and normal breast tissue. Results The incidence rate of breast cancer in LID mice was lower than that in control mice (P<0.05). VEGF expression and microvessel density of LID mice were lower than those in control mice (P<0.05). Compared to the control mice, IGF-1, FGF-1, TGF-β1 and HGF genes were increased, and FGFR-2, PDGF-A and PDGF-B genes were decreased in breast cancer of LID mice. After GS Rg3 treatment, VEGFa, EGF, EGFR, PDGF-A and FGFR-2 genes were increased, IGF-1 and TGF-β1 genes were decreased in breast cancer of LID mice compared with the control mice. Conclusion IGF-1 may be involved in mouse breast cancer progression and associated with the growth of blood vessels. Angiogenesis inhibitor may play an antitumor role by IGF-1 and TGF-β1.

    Release date:2016-09-08 11:07 Export PDF Favorites Scan
  • Research Progress of Probe Design Software of Oligonucleotide Microarrays

    DNA microarray has become an essential medical genetic diagnostic tool for its high-throughput, miniaturization and automation. The design and selection of oligonucleotide probes are critical for preparing gene chips with high quality. Several sets of probe design software have been developed and are available to perform this work now. Every set of the software aims to different target sequences and shows different advantages and limitations. In this article, the research and development of these sets of software are reviewed in line with three main criteria, including specificity, sensitivity and melting temperature (Tm). In addition, based on the experimental results from literatures, these sets of software are classified according to their applications. This review will be helpful for users to choose an appropriate probe-design software. It will also reduce the costs of microarrays, improve the application efficiency of microarrays, and promote both the research and development (R&D) and commercialization of high-performance probe design software.

    Release date: Export PDF Favorites Scan
  • Study of Intestinal Obstruction Caused by Intestinal Adhesion on The Gene Level

    Objective To explore the pathogenesis of the level of gene and therapeutic target genes associated with intestinal obstruction by analyzing the differential expression gene. Methods The gene expression data that came from public database gene expression omnibus (GEO) which provided adhesion formation’ gene expression data on 1, 3, 7,and 14 days after operation (n=8) and normal intestinal tissues’ gene expression data (n=2) of mouse were collected. The gene function and differential expression of genes were analyzed by using gene ontology (GO) and significance analysis of microarray (SAM). Results There were a lot of response stimulated up-regulation of gene expression when occurrence of adhesion, and the products of these genes were distributed on cell membrane. The analysis results of gene expression at different time point after operation showed that expression up-regulated of Hmgcs 2 gene occurred on 3-14 days ofter operation and expression up-regulated of Stxbp 5 gene occurred on 14 days ofter operation. Conclusions The adhesion formation may be closely associated with the genes of response to stimulus and the gene product in membrane. The Hmgcs 2 and Stxbp 5 genes may be closely associated with the occurrence of other diseases which induced by adhesion formation.This provides a basis for the discovery of potential therapeutic targets.

    Release date: Export PDF Favorites Scan
  • Gene Chip Analysis for Artery of Rats with Atherosclerosis

    ObjectiveTo investigate the pathogenesis of atherosclerosis (AS) by detecting different expression genes between normal Wistar rats and rats with atherosclerosis through the technology of gene chip. MethodsThe rats were treated with standard diet with saline injection (control group) or high-cholesterol diet with vitamin D3 injection and balloon injury (model group). Total cholesterol (TC) and triglyeride (TG) in serum were detected 90 days later to ensure the success of establishment of the atherosclerosis model. Abdominal aorta was isolated and stained with HE. Total RNA was isolated from the aorta for gene chip analysis to explore the differential gene expression. ResultsCompared with the control group, the TC and TG level in the model group were highly advanced (P<0.05). AS model was confirmed by pathological observation. Gene chip detection showed that 511 genes were up-regulated and 1 219 ones were down-regulated which were interrelated with lipid metabolism, inflammatory reaction, oxidative stress and apoptosis as well. ConclusionThe expression change with multiple gene in AS suggests that the nosogenesis of AS is adjusted and controlled complicatedly. Intensive study of some important genes will contribute to the prevention and improvement of prognosis of AS.

    Release date: Export PDF Favorites Scan
  • 转录组测序技术在癫痫中的应用

    转录组测序(RNA sequencing,RNA-seq)技术作为一种新兴的测序方法,利用高通量测序平台,对特定状态下的细胞内全部 RNA 进行测序分析,揭示不同物种的基因表达情况以及转录调控的规律。癫痫发病原因复杂,即使具有相同突变基因的癫痫患者,临床表现严重程度不同,提示存在额外的影响因素,RNA-seq 技术通过对差异表达基因的分析,在癫痫病因的研究中发挥重要的作用。文章主要介绍 RNA-seq 技术与其他测序技术的比较以及不同的 RNA-seq 技术平台特点,并叙述 RNA-seq 技术在癫痫中的应用。

    Release date:2018-03-20 04:09 Export PDF Favorites Scan
  • Bioinformatics analysis of gene expression in Mesio-temporal lobe epilepsy

    ObjectiveTo investigate the significant genes in Mesio-temporal lobe epilepsy (MTLE) and explore the molecular mechanism of MTLE.MethodsThe microarray data of MTLE were downloaded from the Gene Expression Omnibus (GEO) database and analyzed by bioinformatics methods using GEO2R tool, Venny2.1.0, FUNRICH and Cytoscape software, DAVID and String databases.ResultsOf all the 331 differentially expressed genes(DEGs), 46 genes were down-regulated and 285 genes were up-regulated in dataset GSE88992; Furthermore, the core module genes were identified from those DEGs, which were expressed mostly in plasma membrane and extracellular space; The major molecular funtion were chemokine activity, cytokine activity and chemokine receptor binding; The main biological pathways involved neutrophil chemotaxis, inflammatory response and positive regulation of ERK1 and ERK2 cascade; The KEGG analysis showed DEGs enriched in Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Complement and coagulation cascades. In addition, ten hub genes (Il6, Fos, Stat3, Ptgs2, Ccl2, Timp1, Cd44, Icam1, Atf3, Cxcl1) were found to significantly express in the MTLE.ConclusionThe pathogenesis of MTLE involves multiple genes, and multiple cell signaling pathways. Thus investigations of these genes may provide valuable insights into the mechanism of MTLE.

    Release date:2020-07-20 08:13 Export PDF Favorites Scan
  • Study on the mechanism of c-Met expression on invasion and metastasis of colorectal cancer by gene microarray

    ObjectiveTo study the mechanism of the effect on invasion and metastasis of colorectal cancer by down-regulating c-Met gene.Methodsc-Met genes were knocked down in SW480 cells, differential genes were screened by gene chip, functional cluster analysis of differential genes was carried out, and IPA was used to analyze the interaction network of cell signal pathway and related differential genes, as well as the ralationship between related genes and upstream regulatory molecules. The related genes in the suppressed signal pathway were selected for qPCR verification.ResultsAfter knockdown of c-Met, the number of up-regulated genes and down-regulated genes in SW480 cells was 399 and 286, respectively. Cluster analysis showed that c-Met knockdown had a great effect on the gene expression level of SW480 cells, IPA pathway analysis showed that HGF signaling pathway was suppressed, and after c-Met knockdown, IPA interaction network suggested that AKT2, PIK3CA, and MAP2K4 in HGF pathway were down-regulated, and qPCR verified that the above genes were also down-regulated, which was consistent with the results of microarray.Conclusionc-Met may affect the invasion and metastasis of colorectal cancer through the regulation of AKT2, PIK3CA, and MAP2K4 in HGF pathway.

    Release date:2020-04-28 02:46 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content