Objective To explore the expression characteristics of chaperone interacting protein (CHIP) in normal, scar and chronic ulcer tissues and its relationship with wound healing. Methods Twenty biopsies including scar tissues(n=8), chronic ulcer tissues(n=4) and normal tissues(n=8)were used in this study. The immunohistochemical staining (power visionTMtwo-step histostaining reagent) was used to explore the amount and expression characteristics of such protein.Results The positive expression of CHIP was observed in fibroblasts, endothelial cells and epidermal cells in dermis and epidermis. It was not seen ininflammatory cells. The expression amount of CHIP in scar tissues, chronic ulcer tissues and normal tissues was 89%, 83% and 17% respectively. Conclusion Although the function of CHIP is not fully understood at present, the fact that this protein is expressed only at the mitogenic cells indicates that it may be involved in mitogenic regulation during wound healing.
To investigate the inhibitory effect of Col I A1 antisense ol igodeoxyneucleotide (ASODN) transfection mediated by cationic l iposome on Col I A1 expression in human hypertrophic scar fibroblasts. Methods Scar tissue was obtained from volunteer donor. Human hypertrophic scar fibroblasts were cultured by tissue block method. The cells at passage 4 were seeded in a 6 well cell culture plate at 32.25 × 104 cells/well, and then divided into 4 groups: group A, l iposomeand Col I A1 ASODN; group B, Col I A1 ASODN; group C, l iposome; group D, blank control. At 8 hours, 1, 2, 3 and 4 days after transfection, total RNA of the cells were extracted, the expression level of Col I A1 mRNA was detected by RT-PCR, the Col I A1 protein in ECM was extracted by pepsin-digestion method, its concentration was detected by ELISA method. Results Agarose gel electrophoresis detection of ampl ified products showed clear bands without occurrence of indistinct band, obvious primer dimmer and tailing phenomenon. Relative expression level of Col I A1 mRNA: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), and groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (Pgt; 0.05); at 1 day after transfection, groups A and B were less than groups C and D (P lt; 0.05), and there was no significant difference between group A and group B, and between group C and group D (P gt; 0.05 ); at 2 days after transfection, there were significant differences among four groups (P lt; 0.05); at 3 and 4 days after transfection, group A was less than groups B, C and D (P lt; 0.05), group B was less than groups C and D (P lt; 0.05), and no significant difference was evident between group C and group D (P gt; 0.05). Concentration of Col I protein: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (P gt; 0.05); at 1 day after transfection, significant differences were evident among four groups (P lt; 0.05); at 2, 3 and 4 days after tranfection, groups A and B were less than groups C and D (P lt; 0.05), and no significant difference was evident between group A and group B (P gt; 0.05). Conclusion Col I A1 ASODN can inhibit mRNA and protein expression level of Col I A1. Cationic l iposome, as the carrier, can enhance the inhibition by facil itating the entry of ASODN into cells and introducing ASODN into cell nucleus.
Objective To investigate the effects of asiaticoside onthe proliferation and the Smad signal pathway of the hypertrophic scar fibroblasts.Methods The hypertrophic scar fibroblasts were cultured with tissue culture method. The expressions of Smad2 and Smad7 mRNA after asiaticoside treatment were determined by reverse transcriptionpolymerase chain reaction 48 hours later. Thecell cycle, the cell proliferation, the cell apoptosis and the expression of phosphorylated Smad2 and Smad7 with(experimental group) or without(control group) asiaticoside were detected with flow cytometry, immunocytochemistry and Western blot. Results Asiaticoside inhibited the hypertrophic scar fibroblasts from phase S to phase M. The Smad7 content and the expression of Smad7 mRNA were (1.33±1.26)% and (50.80±22.40)% in experimental group, and (9.15±3.36)% and (32.18±17.84)% in control group; there were significant differences between two groups (P<0.05). While the content and the mRNA expression of Smad2 had no significant difference between two groups. Conclusion Asiaticoside inhibits the scar formation through Smad signal pathway.
In order to study the biological properties of fibroblasts isolated from different tissues. The fibroblasts from normal skin, hypertrophic scar and keloid were cultured, respectively, in vitro, and their morphologies and growth kinetics were compared. The results revealed that although fibroblasts in keloid were irregularly arranged, crisscross and overlapping with loss of polarization, there was no significant difference in the 3 groups so far the cellular morphology of fibroblast itself, cellular growth curve, cellular mitotic index, cloning efficiency and DNA content provided those cultures were in the same cellular density and culture conditions. It was concluded that fibroblasts isolated from culture of normal skin, hypertrophic scar and keloid in vitro showed no significant difference in morphology and growth kinetics, on the contrary, their biological behaviors were quite similar.
Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.
Objective To study the effect and mechanism of the apoptosis of hypertrophic scar fibroblasts (HSF) induced by artesunate(Art). Methods HSFs were isolated and cultured from human earlobe scars by the tissue adherence method. The 3th to 5th generation cells were harvested and divided into two groups. HSF was cultured with normal medium in control group and with medium containing60, 120 and 240 mg/L (5 ml)Art in experimental group. Apoptosis and cell cycle were identified by light microscopy, electronmicroscopy and flow cytometry. Then, HSF was cultured with normal medium in control group and with medium containing 30, 60 and 120 mg/L Art in experimental group. The changes of intracellular calcium concentration were observed. Results The primary HSF was fusiform in shape and adherent. The vimentin positive expression was analyzed by immunocytochemistry. Art could induce apoptosis of HSF in the range of 60-240 mg/L under inverted microscope. The effect was dose and timedependent. Clumping of nuclear chromatin showed margination in the experimentalgroup. And the disaggregation of the nucleolus were observed under electronmicroscopy. There were significant differences in the proportion of HSF apoptosis and HSF at G0-G1,S, G2-M stages between the two groups(P<0.05). Apoptotic peak was shown in experimental group by flow cytometry. The peak became more evident asArt concentration increased. The intracellular calcium concentration elevated markedly in HSF with 30-120 mg/L Art treatment for 24 hours, showing significant differences between the two groups (P<0.05). Conclusion The Art facilitates HSF cells apoptosis in vitro by the change of cell cycle. It is suggested that intracellular calcium variation may be one of the mechanisms of HSF apoptosis induced by Art.
Objective To detect the expression of heat shock protein 47 mRNA in pathological scar tissue by using real-time fluorescent quantitative reversetranscription-polymerase chain reaction (RT-PCR). Methods The tissues of normal skin(n=6), hypertrophic scar(n=6) and keloid(n=6) were adopted, which were diagnosised by Pathology Department. Based on fluorescent TaqMan methodology, the real-time fluorescent quantitative RT-PCR were adopted to detect the expression ofheat shock protein 47 mRNA. Results Compared with normal skin tissue(0.019±0.021)×105, the expressions of heat shock protein47 cDNA of hypertrophic scar tissue(1.233±1.039)×105 and keloid tissue(1.222±0.707)×105 were higher, being significant differences(Plt;0.05). Conclusion A fluorescent quantitative method was successfully applied to detecting the expression of heat shock protein 47 mRNA. Heat shock protein 47 may play an important role in promoting the formation of pathological scar tissue.
Objective To identify the effect of β-endorphin in the development of paresthesia in hypertrophic scar by detecting the expression and content of β-endorphin in human normal skin and hypertrophic scar. Methods Hypertrophic scar samples were collected from 42 patients with hypertrophic scar for 1-20 years (mean, 4.5 years), including 15 males and27 females with an average age of 32.6 years (range, 16-50 years). According to the kind of paresthesia, they were divided into 3 gourps: non-pain-pruritus group (n=20), pruritus group (n=14), and pain-pruritus group (n=8). Normal skin samples (normal skin group) were harvested from 5 patients undergoing skin grafting surgery, including 3 males and 2 females with an average age of 24.6 years (range, 15-37 years). The immunofluorescence method was used to observe the expression of β-endorphin and ELISA method to detect the concentrations of β-endorphin in the tissues. Results The β-endorphin expressed in all samples, and it expressed around peri pheral nerve fibers in the dermis, fibroblasts, and monocytoid cells princi pally; and it expressed significantly ber in pruritus group and pain-pruritus group than in non-pain-pruritus group and normal skin group. The β-endorphin content was (617.401 ± 97.518) pg/mL in non-pain-pruritus group, (739.543 ± 94.149) pg/mL in pruritus group, (623.294 ± 149.613) pg/mL in pain-pruritus group, and (319.734 ± 85.301) pg/mL in normal skin group; it was significantly higher in non-pain-pruritus group, pruritus group, and pain-pruritus group than in normal skin group (P lt; 0.05); it was significantly higher in pruritus group than in non-pain-pruritus group and pain-pruritus group (P lt; 0.05); and there was no significant difference between non-pain-pruritus group and pain-pruritus group (P gt; 0.05). Conclusion The expression of β-endorphin is high in hypertrophic scar, it may paly an important role in process of pruritus in these patients.
ObjectiveTo explore the reaction of normal skin fibroblasts from different sites of human body to cyclic stretch. MethodsThe normal skin tissues from scapular upper back and medial side of upper arm of 3 patients were cultured in vitro. Fibroblasts of experimental group were loaded by cyclic stretch with 10% amplitude for 24, 36, and 48 hours respectively. Fibroblasts of control group were cultured without cyclic stretch. The morphologic changes were observed using inverted microscope. CCK-8 method was used to detect the proliferation of the fibroblasts. The expressions of integrin β1 mRNA, p130Crk-associated substance (P130Cas) mRNA, transform growth factor β1 (TGF-β1) mRNA, and collagen type Ⅰ α1 chain (COL1A1) mRNA were detected by real-time quantitative PCR. The protein levels of collagen type Ⅰ and TGF-β1 were detected by ELISA. ResultsThe cultured cells showed a significantly increased cell proliferation ability, and apparent orientation after the applied strain. The proliferation activity, mRNA expression levels of integrin β1, P130Cas, and TGF-β1, protein levels of TGF-β1 in back skin were significantly higher than those in arm skin (P<0.05) when the fibroblasts were loaded for 36 and 48 hours, but no significant difference between back skin and arm skin at 24 hours (P>0.05). There was no significant difference in mRNA expression level of COL1A1 and protein level of collagen type Ⅰ between back skin and arm skin at 24, 36, and 48 hours (P>0.05). There was no significant difference in all above indexes between back skin and arm skin in control group (P>0.05). ConclusionFibroblasts from scapular upper back and medial side of upper arm display different reactions to cyclic stretch, which indicates that there exists site difference in the reactions of fibroblasts to cyclic stretch. It might be related with the incidence of hypertrophic scar in different sites of the body.