west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "复合材料" 17 results
  • Application and Research Progress of Extracellular Matrix in Long Segmental Tracheal Defect

    Patients with pathological tracheal loss more than a certain length may need tracheal transplantation.Traditional natural tissue and autologous tissue have failed to produce satisfactory clinical outcomes to replace the trachea because of local infection,tracheal stenosis,tracheomalacia,immune rejection et al. In recent years,the emergence oftissue engineering trachea provides a new idea for tracheal transplantation. But scientists have not yet reached a consensus about how to choose ideal extracellular matrix to construct tissue engineering trachea. At present research and applicationof tissue engineering trachea,extracellular matrices mainly include allogenic trachea,allogenic aorta and biologicalcomposite materials. Each allogenic matrix or biological composite material has its own advantages and disadvantages. Therefore,this article mainly summarizes recent application and research progress of extracellular matrix in long segmental tracheal defect and its future perspective.

    Release date:2016-08-30 05:46 Export PDF Favorites Scan
  • DEVELOPMENT OF CHITOSAN/POLYETHYLENE GLYCOLS-SUCCINATE MITOMYCIN C FILM DRUG DELIVERYSYSTEM AND RELEASING CHARACTER IN VITRO

    To develop the chitosan /polyethylene glycols succinate (CH/PEG-SA) mitomycin C (MMC) film drug del ivery system and its release effect in vitro. Methods MMC loading in composite films was determined using a UV-visible spectrophotometer. Freeze-dried films (90 mg) were immersed in 1 mL PBS buffer (pH 7.4). The concentrations ofMMC releasing in vitro were calculated refer to the standard curve of relationship between the concentrations of MMC and the value of UV-visible spectrophotometer. The curve of the concentrations of MMC releasing from the films in vitro was drawn at different time. The relationship between the films, structure and the drug releasing was revealed. Results The films showed swell ing without brittleness. The equation of Linear Regression was y=0.593x3– 2.563x2 +25.944x – 0.236 (R2=1.000). The film had a good drug del ivery capabil ity. The samples weighing 20 mg were soaked into the l iquid of PBS, the releasing concentrations of MMC were 14.961 6 μg/mL at 12 days, 14.482 4 μg/mL at 18 days and 11.409 2 μg/mL at 32 days, which was higher than ID50 of MMC (10.471 3 μg/L) to fibroblast. Then MMC was released at a low concentration. The releasing concentrations of MMC was 0.179 3 μg/ mL at 60 days until being del ivered completely. Conclusion The flexibil ity is enhanced , and the mechanical function is improved, so that there is better nature of membrane. The initial burst is avoided more effectively, and the drug releasing would be maintained for a certain time.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
  • THERAPEUTIC EFFECTS OF CHITOSAN/POLYETHYLENE GLYCOLS-SUCCINATE/MITOMYCIN C FILM DRUG DELIVERY SYSTEM ON EPIDURAL SCARRING TISSUES AFTER LAMINECTOMY OF SD RATS

    Objective To investigate the therapeutic effect of the chitosan/polyethylene glycols-succinate/ mitomycin C (CH/PEG-SA/MMC) film on epidural scarring tissues. Methods According to a specific proportion of respective materials, the film of CH/PEG-SA/MMC was developed under some condition. Thirty SD rats were selected and randomized into 6 groups with 5 rats in each group. A rat model of lumbar laminectomy was used. The amount of 20 mg of the CH film was implanted into the animals in group I, 20 mg of CH/PEG film in group II, 20 mg of CH/PEGSA film in group III, 0.05 mg/mL of the MMC soaking for 5 minutes in group IV, 20 mg of CH/PEG-SA/MMC film in group V, and nothing was done in group VI. Specimens were harvested 4 weeks after the above procedures and were then subjected to immunohistochemical and histological examinations to compare their therapeutic effects on epidural cicatricial tissues. Results All rats were in good conditions after operation, without gait abnormal ity, restlessness, infection and death. There was no significant difference among the 6 groups in the postoperative Rydell score (P lt; 0.05). The content of hydroxyprol ine in groups I, II, III, IV, V and VI was (0.570 8 ± 0.345 0), (0.728 6 ± 0.150 6), (0.553 4 ± 0.122 3), (0.313 3 ± 0.106 4), (0.261 9 ± 0.102 1)and (1.020 1 ± 0.120 6) μg/ mg, respectively. There was a significant difference between groups IV, V and groups I, II, III (P lt; 0.05), and there was significant difference between group VI and the rest 5 groups (P lt; 0.05). According to the histological observation, group V had less collagenous fiber parallel ing the dura mater, with few inflammatory cells infiltration, with few capillary vessels and no reaction of macrophages. Conclusion CH/PEG-SA/MMC films can effectively reduce the amount of Hyp in epidural scarring tissues after lumbar laminectomy and therefore is a good treating method in preventing scarring tissue adhesion.

    Release date:2016-09-01 09:18 Export PDF Favorites Scan
  • CLINICAL OBSERVATION ON NANO-HYDROXYAPATITE AND POLYAMIDE 66COMPOSITE IN REPAIRING BONE DEFECT DUE TO BENIGN BONE TUMOR

    To observe the clinical effect and safety of the nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite in repairing the bone defects due to benign bone tumors. Methods From January 2003 to May 2005, 38 patients (21 males, 16 females; age, 19-58 years, averaged 38.5 years) with the bone defects due to benign bone tumors were treated with the n-HA/PA66 grains. Among the 37 patients, 11 had fibrous dysplasia, 14 had bone cyst, 10 had giant cell tumor of the bone (Grade Ⅰ), and 2 had enchondroma. The tumors ranged in size from 1.0 cm×0.7 cm×0.4 cm to 10.0 cm×4.0 cm×3.0 cm, with the location of the proximal femur in 12 patients, the distal femur in 7, the proximal tibia in 9, the proximal humerus in 5, the phalanges of the finger in 2, the metacarpal bone in 1,and the calcaneus in 1. Allthe benign bone tumors underwent the curettage treatment, and then the tumor cavities were filled up with the n-HA/PA66 grains. The incision healing, local inflammatory reaction, rejection, toxic reaction, tumor cavity healing, and function recovery of the limbs were all observed after operation. Results All the patients were followed up for 5-33 months, and all the incisions healed by the first intention except 1 incision, which developed infection. The inflammatory reaction was mild, with no reection or general toxic reaction. At 3 to 5.5 months(mean 4 months) after operation, osteogenesis wasfound in the space filled with the n-HA/PA66 grains. Eight months after operation, the patients’ lower limbs could bear weights; 5 months after operation, the upper limbs could complete daily work. Conclusion The n-HA/PA66 grains have great biological safety, good biocompatibility, and good bone conduction, which aregood materials for the bone repair and reconstruction, and can be safely, andeffectively used for repairing the bone defects due to benign bone tumors.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • EVALUATION OF BIOLOGICAL SAFEFY OF CONTINUOUS CARBONFIBER REINFORCED POLYOLEFIN AS HARD TISSUE REPAIR

    Objective To evaluate the biological safety of continuous carbonfiber reinforced polyolefin as hard tissue repair material. Methods Biocompatibility of the material was evaluated through hemolysis test, pyrogen test,skin irritation test, cytotoxicity test, ames test,in vitro chromosome aberration test, and bone marrow cells Micronuclei test. Results No obvious hemolysis, pyrogenic characteristics, sensitivity, cytotoxxicity, and mutagenicity were observed. Conclusion The continuous carbonfiber reinforced polyolefin composite material is of good biological safety. It meets all the demand made by biological safety as hardtissue repair material.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • EFFECT OF NANO-HYDROXYAPATITE COLLAGEN BONE AND MARROW MESENCHYMAL STEM CELL ON TREATMENTOF RABBIT OSTEONECTOSIS OF THE FEMORAL HEAD DEFECT

    Objective To evaluate the effect of nano-hydroxyapatit e collagen (nHAC) bone and marrow mesenchymal stem cells (MSCs) on the treatment of rabbit osteonecrosis of the femoral head (ONFH) defect. Methods From June to October 2004, animal models of ONFH defect were established i n 45 New Zealand rabbits. They were divided into 3 groups randomly:In group A, as the control group, defect was not filled with any implants; In group B with nHAC; In group C with nHAC+MSC. Imaging and histological observation were made 4, 8, 12 weeks after operation. Results group C had a better o steogenesis ability than group B and group A. group B had a better osteogenesis ability than group A. Obvious new bones and osteogenesis were observed in group C 4 weeks after operation. The defect areas in group C were almost repaired 12 weeks after operation. Conclusion nHAC has a better effect of o steoconduction and it is a superior material for repairing bone defect of ONFH a nd of great value in treating ONFH when compounded with MSCs. 

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • REPAIRMENT OF CRANIAL BONE DEFECT WITH BIOSYNTHESIZED HIGH POLYMER

    Good results were achieved in Ⅰ8 cases of cranioplasty in which a new meterial of medical polymer had been used. The properties of the material and the operation method are also described in this paper, The advantages of the new matiral become more obvious, in comparison with other methods which are usually used in cranioplasty.

    Release date:2016-09-01 11:39 Export PDF Favorites Scan
  • Experimental Study of in vivo Degradation, Absorption and Osteogenesis of Injected Absorbable Polyamine Acid/Calcium Sulfate Composites

    ObjectiveTo observe the ability of osteogenesis in vivo using the injected absorbable polyamine acid/calcium sulfate (PAA/CS) composites and assess their ability to repair bone defects. MethodWe selected 48 New Zealand white rabbits, and half of them were male with a weight between 2.0 and 2.5 kg. Bone defect models were made at the rabbit femoral condyle using electric drill, and the rabbits were divided into two groups. One group accepted implantation of the material at the defect, while nothing was done for the control group. After four, eight, twelve and sixteen weeks, the animals were killed. The line X-ray and hard tissue slices histological examination (HE, MASSON staining) were observed to assess the situation of degradation, absorption and bone formation of the material. ResultsFour weeks after operation, bone defect of the experimental group had no obvious callus growth on X-ray imaging. Histology showed that the material began to degrade and new immature trabecular bone grew. The bone defect of the experimental group had a small amount of callus growth on X-ray imaging after eight weeks. And histology showed that the material continued to degrade and new immature trabecular bone grew continually. There was an obvious callus growth after twelve weeks, and the bone defect area had smaller residual low-density shadow on X-ray imaging. Histology showed that most of the materials degraded and parts of woven bone grew into lamellar bone. After sixteen weeks, the composites were absorbed completely, replaced by new bone tissues, and the new bone was gradually changed from woven bone into mature plate of bone. There was no significant change in bone defect in the control group within twelve weeks, and part of bone defect hole became smaller, and partial edge repair could be detected. ConclusionsThe PAA/CS composites can be completely degraded and absorbed, with a certain activity of bone formation, expected to be used as bone repair materials.

    Release date: Export PDF Favorites Scan
  • Preparation and Property Evaluation of Graphene Oxide Based Silver Nanoparticles Composite Materials

    We prepared silver nanoparticles/polyethyleneimine-reduction graphene oxide (AgNP/rGO-PEI) composite materials, and evaluated their quality performance in our center. Firstly, we prepared AgNP/rGO-PEI, and then analysed its stability, antibacterial activity, and cellular toxicity by comparing the AgNP/rGO-PEI with the silver nanoparticles (PVP/AgNP) modified by polyvinylpyrrolidone. We found in the study that silver nanoparticles (AgNP) distributed relatively uniformly in AgNP/rGO-PEI surface, silver nanoparticles mass fraction was 4.5%, and particle size was 6-13 nm. In dark or in low illumination light intensity of 3 000 lx meter environment (lux) for 10 days, PVP/AgNP aggregation was more obvious, but the AgNP/rGO-PEI had good dispersibility and its aggregation was not obvious; AgNP/rGO-PEI had a more excellent antibacterial activity, biological compatibility and relatively low biological toxicity. It was concluded that AgNP/rGO-PEI composite materials had reliable quality and good performance, and would have broad application prospects in the future.

    Release date: Export PDF Favorites Scan
  • Research Progress on Application of Gold Magnetic Nanocomposite in Biomedicine

    This paper provides a brief overview of the current research activities which focused on the bio-application of gold magnetic nanocomposite particles. By combining the magnetic characteristics of the iron oxide core with the unique features of nano-gold particles such as targeting by surface modification and optical properties, such composite nanoparticles have a wide range of applications in cancer hyperthermia, CT and MRI imaging, bio-separation, biosensors, gene diagnosis, drug targeting and many other biomedical fields.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content