west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "寰枢椎" 19 results
  • Preoperative Planning of the Posyerior Atlantoaxial Pedicle Screw Fixation

    目的:探讨后路寰枢椎椎弓根螺钉内固定的术前计划方案,明确其手术指导意义。方法:选取经CT评估寰枢椎椎弓根螺钉置入可行的,并拟选择该手术治疗的上颈椎不稳患者15例,容积再现重建(VR)寰枢椎椎弓表面影像,了解个体椎弓后方表面解剖形态与骨性解剖标志。同时按寰枢椎椎弓根理想的钉道走行,多平面重建(MPR)个体椎弓根断面影像。术前根据这些解剖影像设计手术暴露路经、理想的进钉点与钉道轨迹。术中按该术前计划手术暴露,找到理想的进钉点并钻孔置椎弓根螺钉。将术中观察到的C1后弓及C2椎弓表面解剖,与术前CT重建影像对比。术后CT复查,评价螺钉置入情况。结果:15例术中观察到的C1后弓及C2椎弓表面解剖特征与术前CT容积再现的影像一致。参照寰枢椎椎弓CT影像解剖制定术前计划方案,术中按其逐一操作,手术简单、直观,无重要血管神经损伤,置钉准确。结论:根据CT容积再现与多平面重建的寰枢椎解剖影像,制定后路寰枢椎椎弓根螺钉内固定术前计划方案,指导手术安全、可靠。

    Release date:2016-09-08 09:56 Export PDF Favorites Scan
  • POSTERIOR ATLANTOAXIAL LATERAL MASS SCREW FIXATION AND SUBOCCIPITAL DECOMPRESSION FOR TREATMENT OF Arnold-Chiari MALFORMATION ASSOCIATED WITH ATLANTOAXIAL DISLOCATION

    ObjectiveTo evaluate the effectiveness of the posterior atlantoaxial lateral mass screw fixation and suboccipital decompression in the treatment of Arnold-Chiari malformation associated with atlantoaxial joint dislocation. MethodsBetween September 2012 and November 2015, 17 cases of Arnold-Chiari malformation associated with atlantoaxial dislocation were treated by the posterior atlantoaxial lateral mass screw fixation and suboccipital decompression and expansion to repair the dura mater and bone graft fusion. There were 10 males and 7 females, aged 35-65 years (mean, 51.4 years). The disease duration was 14 months to 15 years with an average of 7.4 years. According to Arnold-Chiari malformation classification, 13 cases were rated as type I, 3 cases as type II, and 1 case as type III-IV. Cervical nerve root stimulation and compression symptoms were observed in 12 cases, occipital foramen syndrome in 11 cases, cerebellar compression symptoms in 6 cases, and syringomyelia in 10 cases. ResultsPrimary healing of incision was obtained in the other patients except 1 patient who had postoperative cerebrospinal fluid leakage after removal of drainage tube at 3 days after operation, which was cured after 7 days. All patients were followed up 6 months to 2 years, with an average of 18.4 months. The neurological dysfunction was improved in different degrees after operation. The Japanese Orthopedic Association (JOA) score was significantly increased to 16.12±1.11 at 6 months from preoperative 11.76±2.01 (t=13.596, P=0.000); compression of spinal cord and medulla was improved. X-ray examination showed bone graft fusion at 6 months after operation. In 10 patients with spinal cord cavity, MRI showed empty disappearance in 3 cases, empty cavity lessening in 6 cases, and no obvious change in 1 case at 6 months. ConclusionAtlantoaxial lateral mass screw fixation and suboccipital decompression and expansion to repair the dura mater can obtain good effectiveness in the treatment of Arnold Chiari malformation associated with atlantoaxial transarticular dislocation.

    Release date:2016-11-14 11:23 Export PDF Favorites Scan
  • Biomechanical stability evaluation of the fixation technique for crossed rods consisting of occipital plate and C2 bilateral lamina screws

    ObjectiveTo evaluate the stability of the fixation technique for the crossed rods consisting of occipital plate and C2 bilateral lamina screws by biomechanical test.MethodsSix fresh cervical specimens were harvested and established an atlantoaxial instability model. The models were fixed with parallel rods and crossed rods after occipital plate and C2 bilateral laminae screws were implanted. The specimens were tested in the following sequence: atlantoaxial instability model (unstable model group), under parallel rods fixation (parallel fixation group), and under crossed rods fixation (cross fixation group). The range of motion (ROM) of the C0-2 segments were measured in flexion-extension, left/right lateral bending, and left/right axial rotation. After the test, X-ray film was taken to observe the internal fixator position.ResultsThe biomechanical test results showed that the ROMs in flexion-extension, left/right lateral bending, and left/right axial rotation were significantly lower in the cross fixation group and the parallel fixation group than in the unstable model group (P<0.05). There was no significant difference between the cross fixation group and the parallel fixation group in flexion-extension and left/right lateral bending (P>0.05). In the left/right axial rotation, the ROMs of the cross fixation group were significantly lower than those of the parallel fixation group (P<0.05). After the test, the X-ray film showed the good internal fixator position.ConclusionThe axial rotational stability of occipitocervical fusion can be further improved by crossed rods fixation when the occipital plate and C2 bilateral lamina screws are used.

    Release date:2021-01-07 04:59 Export PDF Favorites Scan
  • Short-term effectiveness of axis laminar screws for reducible atlantoaxial dislocation

    ObjectiveTo investigate reliability and short-term effectiveness of axis laminar screws for reducible atlantoaxial dislocation (RAAD).MethodsA clinical data of 41 patients with RAAD who were admitted between February 2013 and February 2018 and met the inclusion criteria was retrospectively analyzed. The atlases in all patients were fixated by lateral mass screws, and the axes were fixed by laminar screws in 13 cases (LS group) and by pedicle screws in 28 cases (PS group). There was no significant difference in gender, age, and preoperative Japanese Orthopedic Association (JOA) score between the two groups (P>0.05). The effectiveness was estimated by post-operative JOA score; and the accuracy of the axis screw, atlantoaxial bone graft fusion, and the fixation stability were examined by X-ray film and CT.ResultsAll incisions healed by first intention. All patients were followed up 12-17 months (mean, 13.8 months) in LS group and 12-20 months (mean 14.1 months) in PS group, and the difference in follow-up time was not significant (Z=−0.704, P=0.482). At last follow-up, JOA scores were 13.9±1.6 in LS group and 14.3±1.8 in PS group, which significantly improved when compared with the pre-operative scores in the two groups (t=−9.033, P=0.000; t=−15.835, P=0.000); while no significant difference was found between the two groups (t=−0.630, P=0.532). Twenty-five screws of 26 screws in LS group and 54 screws of 56 screws in PS group were implanted accurately, with no significant difference in the accuracy of the axis screw between the two groups (Z=−0.061, P=0.951). All patients obtained atlantoaxial bone graft fusion, except 1 case in PS group. There was no significant difference in the atlantoaxial bone graft fusion between the two groups (Z=−0.681, P=0.496).ConclusionFor RAAD, Axis laminar screws can maintain the atlantoaxial primary stability and had a good short-term effectiveness. So, it could be an alternative and reliable technique for axis screw.

    Release date:2019-11-21 03:35 Export PDF Favorites Scan
  • Effectiveness comparison of robot-assisted and traditional freehand technology in treatment of atlantoaxial dislocation

    Objective To compare the effectiveness of robot-assisted and traditional freehand screw placement in the treatment of atlantoaxial dislocation. Methods The clinical data of 55 patients with atlantoaxial dislocation who met the selection criteria between January 2021 and January 2024 were retrospectively analyzed. According to different screw placement methods, they were divided into the traditional group (using the traditional freedhand screw placement, 31 cases) and the robot group (using the Mazor X robot-assisted screw placement, 24 cases). There was no significant difference in gender, age, body mass index, etiology, and preoperative visual analogue scale (VAS) score, cervical spine Japanese Orthopaedic Association (JOA) score between the two groups (P>0.05). The operation time, intraoperative blood loss, operation cost, and intraoperative complications were recorded and compared between the two groups. The VAS score and cervical spine JOA score were used to evaluate the improvement of pain and cervical spinal cord function before operation and at 1 month after operation. CT examination was performed at 3 days after operation, and the accuracy of screw placement was evaluated according to Neo grading criteria. Results All the 55 patients successfully completed the operation. The operation time, intraoperative blood loss, and operation cost in the robot group were significantly higher than those in the traditional group (P<0.05). A total of 220 C1 and C2 pedicle screws were inserted in the two groups, and 94 were inserted in the robot group, with an accuracy rate of 95.7%, among them, 2 were inserted by traditional freehand screw placement due to bleeding caused by intraoperative slip. And 126 pedicle screws were inserted in the traditional group, with an accuracy rate of 87.3%, which was significantly lower than that in the robot group (P<0.05). There were 1 case of venous plexus injury in the robot group and 3 cases in the traditional group, which improved after pressure hemostasis treatment. No other intraoperative complication such as vertebral artery injury or spinal cord injury occurred in both groups. All patients were followed up 4-16 months with an average of 6.6 months, and there was no significant difference in the follow-up time between the two groups (P>0.05). Postoperative neck pain significantly relieved in both groups, and neurological symptoms relieved to varying degrees. The VAS score and cervicle spine JOA score of both groups significantly improved at 1 month after operation when compared with preoperative scores (P<0.05), and there was no significant difference in the score change between the two groups (P>0.05). Conclusion In the treatment of atlantoaxial dislocation, the accuracy of robot-assisted screw placement is superior to the traditional freedhand screw placement.

    Release date:2024-08-08 09:03 Export PDF Favorites Scan
  • SPINAL PEDICLE SCREW INTERNAL FIXATION THROUGH ENDOSCOPE-ASSISTED POSTERIOR APPROACH FOR TREATMENT OF TRAUMATIC ATLANTOAXIAL INSTABILITY

    Objective To explore the feasibility and effectiveness of spinal pedicle screw internal fixation through endoscope-assisted posterior approach for the treatment of traumatic atlantoaxial instability. Methods Between September 2008 and September 2010, 44 patients with traumatic atlantoaxial instability received spinal pedicle screw internal fixation through endoscope-assisted posterior operation (micro-invasive surgical therapy group, n=22) or traditional surgical therapy (control group, n=22). There was no significant difference in gender, age, type of injury, disease duration, and preoperative Japanese Orthopedic Association (JOA) score between 2 groups (P gt; 0.05). The blood loss, operation time, length of the incision, improvement rate of JOA, and graft fusion rates were compared between 2 groups to assess the clinical outcomes. Results The blood loss, operation time, and length of the incision in the micro-invasive surgical therapy group were better than those in control group (P lt; 0.05). All incisions were primary healing. Of 88 pedicle screws, 7 pedicle screws penetrated into the interior walls of cervical transverse foramen in the micro-invasive surgical therapy group and 8 in the control group, but there was no syndrome of vertebral artery injury. All patients of the 2 groups were followed up 12 to 37 months (mean, 26 months). Bony fusion was achieved in all cases within 3 to 12 months (mean, 5.3 months). No loosening or breakage of screw occurred. At 6 months to 1 year after operation, the internal fixator was removed in 6 cases and the function of head and neck rotary movement were almost renewed. The JOA score was significantly improved at last follow-up when compared with preoperative score (P lt; 0.05), and no significant difference in JOA score and improvement rate between the 2 groups at last follow-up (P gt; 0.05). Conclusion The micro-invasive surgical therapy can acquire the same effectiveness to the traditional surgical therapy in immediate recovery of stability, high graft fusion rate, and less complication. Moreover, it can significantly reduce the operation time, blood loss, and soft tissue injury, so this approach may be an ideal way of internal fixation to treat traumatic atlantoaxial instability.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • Application of posterior approach for atlantoaxial subdural extramedullary nerve sheath tumors

    ObjectiveTo investigate the procedure and effectiveness of posterior approach for operation of atlantoaxial subdural extramedullary nerve sheath tumors.MethodsBetween January 2012 and March 2017, 9 patients with atlantoaxial subdural extramedullary nerve sheath tumors were treated, including 7 males and 2 females, aged 25-62 years (mean, 45.4 years). There were 8 cases of neurinoma and 1 case of neurofibroma. The tumors were located at C1 in 1 case and C1, 2 in 8 cases. The disease duration ranged from 5 to 120 months, with an average of 45.9 months. The neural function was rated as grade D in 8 cases and grade E in 1 case according to the American Spinal Injury Association (ASIA) grading system. The Japanese Orthopaedic Association (JOA) score was 12.8±2.5. All patients underwent posterior cervical surgery. The laminae were replanted and fixed in 2 cases. The atlantoaxial or occipitocervical axis was not fixed in all patients.ResultsThe operation time was 90-343 minutes, with an average of 179.2 minutes. The intraoperative blood loss was 50-1 000 mL, with an average of 335.6 mL. No relevant complication occurred after operation. All patients were followed up 6-21 months (mean, 11.1 months). The postoperative X-ray films showed the good stability of the cervical spine. All patients had complete tumor resection and no recurrence. The replanted laminae achieved fusion and the internal fixation was firm. According to ASIA grading system, 3 patients of preoperative ASIA grade D had upgraded to grade E at 3 months after operation, while the remaining patients had no change in grading. The JOA score was 15.1±1.4 at 6 months after operation, which was significantly improved when compared with that before operation (t=4.221, P=0.003).ConclusionThe atlantoaxial subdural extramedullary nerve sheath tumor (including the ventral tumor) can be removed completely via posterior approach. The axis lamina can be replanted and fixed with the small titanium plate or lamina screw when necessary, and the atlantoaxial or occipitocervical fixation was not needed.

    Release date:2019-12-23 09:44 Export PDF Favorites Scan
  • DESIGN AND EXPERIMENTAL STUDY OF INDIVIDUAL DRILL TEMPLATES FOR ATLANTOAXIAL PEDICLE SCREW FIXATION

    Objective To explore and evaluate the accuracy and feasibil ity of individual rapid prototype (RP) drill templates for atlantoaxial pedicle screw implantation. Methods Volumetric CT scanning was performed in 8 adult cadaveric atlas and axis to collect Dicom format datas. Then three-dimensional (3D) images of atlas and axis were reconstructed and the parameters of pedicles of 3D model were measured by using software Mimics 10.01. The 3D model was saved by STLformat in Mimics. The scattered point cloud data of 3D model were processed and the 3D coordinate system was located in software Imageware 12.1. The curves and surfaces of 3D model were processed in software Geomagic Studio 10. The optimal trajectory of pedicle screw was designed and a template was constructed which accorded with the anatomical morphology of posterior arch of atlas and lamina of axis by using software Pro/Engineer 4.0. The optimal trajectory of pedicle screw and the template were integrated into a drill template finally. The drill template and physical models of atlas and axis were manufactured by RP (3D print technology). The accuracy of pilot holes of drill templates was assessed by visually inspecting and CT scanning. Results The individual drill template was used conveniently and each template could closely fit the anatomical morphology of posterior arch of atlas and lamina of axis. Template loosening and shifting were not found in the process of screw implantation. Thirty-two pedicle screws were inserted. Imaging and visual inspection revealed that the majority of trajectories did not penetrate the pedicle cortex, only 1 cortical penetration was judged as noncritical and did not injury the adjacent spinal cord, nerve roots, and vertebral arteries. The accuracy of atlas pedicle screw was grade 0 in 15 screws and grade I in 1 screw, and the accuracy of axis pedicle screw was grade 0 in 16 screws. Conclusion The potential of individual drill templates to aid implantation of atlantoaxial pedicle screw is promising because of its high accuracy.

    Release date:2016-09-01 09:03 Export PDF Favorites Scan
  • ANATOMIC STUDY ON PERCUTANEOUS ANTERIOR TRANSARTICULAR SCREW FIXATION BY CT THREEDIMENSIONAL IMAGING

    Objective To improve the safety of the percutaneous anterior transarticular screw fixation (PATSF) by measuring the parameters related to PATSF. Methods Spiral CT scan and three-dimensional reconstructions of the atlantoaxis were performed in 50 adult volunteers. The section of inner margin of atlantal superior articular facet, the coronal plane ofvertebral artery cavity, and the sagittal plane of atlano-axis were obtained with multiplanar reconstruction on hel ical CT. The atlantoaxial vertebral structure and the direction of vertebral artery cavity were observed. The parameters related to PATSF were measured and analysed. Results The suitable position of screw insertion was 4.0 mm from the midpoint of the axoidean anteroinferior margin. The maximum external angle of PATSF was (29.89 ± 1.41)°; the minimum external angle was (4.37±0.87)°; the maximum backward angle was (32.41 ± 1.66)°; the optimal external angle was (17.13 ± 0.88)°; the optimal backward angle was (17.62 ± 1.03)°; and the optimal screw length was (41.57±0.79) mm. The atlantoaxial articular facial diameter was (16.71 ± 1.61) mm; the maximum distance of atlantal lateral displacement was (6.96 ± 1.09) mm; and the ratio of them was 41.80% ± 5.69%. Conclusion The optimal insertion of PATSF is safe and rel iable. The screw can be inserted when the displacement of the atlantal lateral mass is in a certain degree.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • Accuracy analysis and clinical application of the progressive navigation template system to assist atlas-axial pedicle screw placement

    ObjectiveTo investigate the accuracy of progressive three-dimensional navigation template system (abbreviated as progressive template) to assist atlas-axial pedicle screw placement. MethodsThe clinical data of 33 patients with atlas-axial posterior internal fixation surgery between May 2015 and May 2017 were retrospectively analyzed. According to the different methods of auxiliary screw placement, the patients were divided into trial group (19 cases, screw placement assisted by progressive template) and control group (14 cases, screw placement assisted by single navigation template system, abbreviated as initial navigation template). There was no significant difference in gender, age, cause of injury, damage segments, damage types, and preoperative Frankel classification between the two groups (P>0.05). The operation time and intraoperative blood loss of the two groups were compared. The safety of screw placement was evaluated on postoperative CT by using the method from Kawaguchi et al, the deviation of screw insertion point were calculated, the angular deviation of the nailing on coordinate systems XOZ, XOY, YOZ were calculated according to Peng’s method. ResultsAll patients completed the operation successfully; the operation time and intraoperative blood loss in the trial group were significantly less than those in the control group (t=–2.360, P=0.022; t=–3.006, P=0.004). All patients were followed up 12–40 months (mean, 25.3 months). There was no significant vascular injury or nerve injury aggravation. Postoperative immediate X-ray film and CT showed the dislocation was corrected. Postoperative immediate CT showed that all 76 screws were of grade 0 in the trial group, and the safety of screw placement was 100%; 51 screws were of grade 0, 3 of gradeⅠ, and 2 of gradeⅡ in the control group, and the safety of screw placement was 91.1%; there was significant difference in safety of screw placement between the two groups (χ2=7.050, P=0.030). The screw insertion point deviation and angular deviation of the nailing on XOY and YOZ planes in the trial group were significantly less than those in the control group (P<0.05). There was no significant difference in angular deviation of the nailing on XOZ between the two groups (t=1.060, P=0.290). ConclusionCompared with the initial navigation template, the progressive navigation template assisting atlas-axial pedicle screw placement to treat atlas-axial fracture with dislocation, can reduce operation time and intraoperative blood loss, improve the safety of screw placement, and match the preoperative design more accurately.

    Release date:2019-01-25 09:40 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content