Febrile seizures (FS) are one of the most common neurological disorders in pediatrics, commonly seen in children from three months to five years of age. Most children with FS have a good prognosis, but some febrile convulsions progress to refractory epilepsy (RE). Epilepsy is a common chronic neurological disorder , and refractory epilepsy accounts for approximately one-third of epilepsies. The etiology of refractory epilepsy is currently complex and diverse, and its mechanisms are not fully understood. There are many pathophysiological changes that occur after febrile convulsions, such as inflammatory responses, changes in the blood-brain barrier, and oxidative stress, which can subsequently potentially lead to refractory epilepsy, and inflammation is always in tandem with all physiological changes as the main response. This article focuses on the pathogenesis of refractory epilepsy resulting from post-febrile convulsions.
ObjectiveTo evaluate the effects of N-acetylcysteine (NAC) on lung tissue of Wistar rats, which were tracheally instilled fine particulate matter (PM2.5).MethodsForty-eight male Wistar rats were randomly divided into six groups: two control groups [they were blank group (C1), fake treatment group (C2) separately], four treatment groups [they were PM2.5 group (P), low-dose NAC group (L), medium-dose NAC group (M), high-dose NAC group (H) separately]. C1 received no treatments at all. C2 was instilled with sterile water (1 ml/kg) tracheally once a week for four times. P was instilled equivoluminal PM2.5 suspension (7.5 mg/kg) tracheally once a week for four times. The NAC groups received gavage (10 ml/kg) of different dosage of NAC (125, 250, 500 mg/kg) for six days. At the seventh day, the NAC groups were instilled PM2.5 suspension (7.5 mg/kg) tracheally. The procedures were repeated for three times in the NAC groups. Twenty-four hours later after four weeks or after the last instilling, all rats were sacrificed. Lung tissue was stained by hematoxylin-eosin (HE) staining, and histopathological changes of lung tissue were observed by optical microscope. The levels of C-reactive protein (CRP) as well as tumor necrosis factor-α (TNF-α) of serum, TNF-α of bronchoalveolar lavage fluid (BALF), TNF-α as well as interleukin-1β (IL-1β) of homogenates of lung tissue were detected by enzyme-linked immunosorbent assay. The activity of lactate dehydrogenase (LDH) as well as the levels of malondialhyde (MDA) of serum and BALF were detected by standard colorimetric method.ResultsHE staining showed that the normal structure of lung were destroyed in the groups dealed with PM2.5 and NAC could alleviate these changes. Higher dosage of NAC seemed to provide more powerful protections. Structure of the lung in C1 as well as C2 were nearly normal. The levels of CRP as well as TNF-α of serum, TNF-α of BALF, TNF-α as well as IL-1β of homogenates of lung tissue in the groups of P, L, M, H were higher than that in the groups of C1, C2 (all P<0.05). The levels of CRP as well as TNF-α of serum, TNF-α of BALF, TNF-α as well as IL-1β of homogenates of lung tissue in the groups of L, M, H which groups received NAC treatments were lower than that in P group. More, the groups seemed to have lower levels of CRP, TNF-α, IL-1β when higher dosage of NAC were given. The activity of LDH as well as the levels of MDA of serum, and BALF in the groups of P, L, M, H were higher than that in the groups of C1, C2 (all P<0.05). The activity of LDH as well as the levels of MDA of serum and BALF in the groups of L, M, H which groups received NAC treatments were lower than that in P group (all P<0.05). ConlusionTo some extent, NAC demonstrate antagonistic effects on oxidative stress and inflammatory injury on rats’ lung brought by PM2.5.
Objective To observe the effects of cigarette smoke extract ( CSE) on the proliferation and secretion of hydrogen peroxide ( H2O2 ) in human lung fibroblasts ( HLFs) induced by transforming growth factor-β1 ( TGF-β1 ) . Methods Cultured HLFs were divided into a normal group and a model group induced by TGF-β1 ( 5 ng/mL) , then intervened with CSE at different concentrations ( 0% , 2. 5% , 5% ,10% , respectively) . Brdu ELISA assay was used to detect cell proliferation. H2O2 release from cultured cells was assayed using a fluorimetric method. Cellular localization of H2O2 and expression of α-SMA were performed using a fluorescent-labeling strategy. Results TGF-β1 stimulated group showed positive expression of α-SMA, implying TGF-β1 had induced fibroblasts to differentiate into myofibroblasts. In TGF-β1 stimulated group, 2. 5% and 5% CSE promoted cell proliferation ( P lt; 0. 01 or 0. 05) , while 10% CSE inhibited cell proliferation ( P lt; 0. 01) . In the normal group, both low and high concentration of CSE inhibited cell proliferation ( P lt; 0. 01 or P lt; 0. 05) , and the inhibition effect was dose-dependent. HLF induced by TGF-β1 generated low constitutive levels of extracellular H2O2 that was markedly enhanced by CSE treatment ( P lt; 0. 01) . Pretreatment with DPI, an inhibitor of NADPH oxidase, abolished secretion of H2O2 . Cellular localization of H2O2 by a fluorescent-labeling strategy demonstrated that extracellular secretion of H2O2 is specific to the myofibroblast. Conclusions Low concentration of CSE can promote myofibroblast proliferation, and markedly increase extracellular secretion of H2O2 . CSE possibly take part in the development and progress of idiopathic pulmonary fibrosis by increasing oxidative stress.
Objective To observe the effects of epidural anaesthesia (EA) and general anaesthesia (GA) on the changes of plasma epinephrine (E) and norepinephrine (NE) during laparoscopic cholecystectomy (LC). Methods Thirty patients undergoing elective LC were randomly divided into GA group (n=15) and EA group (n=15). The concentrations of plasma NE and E were measured at the following phases: before anaesthesia, before introducing pneumoperitoneum, during pneumoperitoneum, and at the end of operation. Results In EA group, the concentrations of NE weren′t significantly different at each phase, the concentrations of E significantly increased before and during pneumoperitoneum (P<0.05) and returned to the baseline at the end of operation (P>0.05). In GA group, the concentrations of NE and E didn′t change significantly before pneumoperitoneum, but increased during pneumoperitoneum (P<0.05) and E didn′t return to the baseline at the end of operation (P<0.05). The E concentrations of EA group was higher than that of GA group before pneumoperitoneum, but the NE concentration of EA group was lower than that of GA group during pneumoperitoneum (P<0.05). Conclusion Both groups has significant stress reaction, but the stress reaction of EA group is weaker than that of GA group during LC.
【摘要】 目的 了解和分析玉树地震伤员急性应激期睡眠问题。 方法 2010年4月,对90例玉树地震伤员的急性应激反应采用创伤后应激障碍症状清单平民版(PCL-C)17项量表进行筛查评估,并应用SPSS 17.0软件进行统计学分析。 结果 在PCL-C 17个条目中,提示睡眠障碍的条目2和条目13发生率分别为61.10%、63.30%,分别排列第5位、第3位,其得分分别与PCL-C总得分、闪回症状得分、回避症状得分及高警觉性症状得分均呈正相关(P值均lt;0.01)。 结论 睡眠障碍是地震伤员急性应激反应中的常见问题,需高度重视,并进行积极有效的处理。【Abstract】 Objective To learn and analyze the sleep disorders in acute stress of the wounded persons in Yushu earthquake. Methods The acute stress reaction of 90 wounded persons in Yushu earthquake were screened with post-traumatic stress disorder (PTSD) Checklist-Civilian (PCL-C) version-17 in April 2010. Sleep disorders were statistically analyzed with SPSS 17.0. Results In the 17 items of PCL-C, the incidences of the second and the thirteenth item which were related to sleep disorders were respectively 61.10% ranking at the fifth and 63.30% ranking at the third. Both scores of these two items had significant positive correlation with the total score of PCL-C and the scores of the flashback symptom, the avoidance symptom and the heightened alertness symptom (Plt;0.01). Conclusion Sleep disorder is a common problem in acute stress reaction of wounded persons in earthquakes, which needs high attention to be treated positively.
Objective To establish a cell culture model in vitro of acute lung injury and investigate the effects of NF-κB p65 on the inflammation and oxidative stress in TNF-α-activated type Ⅱ alveolar epithelial cells. Methods A549 cells were treated with TNF-α ( 10 ng/mL, 24 h) in the absence or presence of NF-κB p65 siRNA ( 50 nmol /L) . RT-PCR and Western blot were performed to analyze the silence efficiency of RNAi targeting NF-κB p65. The contents of IL-1β, IL-4, and IL-6 in the culture supernatant were measured by ELISA. The concentration of MDA and SOD were detected by colorimetric method. The survival rate of cell was assessed by the methyl thiazolyl tetrazolium ( MTT) assay. Results P65 RNAi significantly decreased the transcription and translation of NF-κB p65 induced by TNF-α( P lt; 0. 05) . The levels of IL-1β, IL-4, and IL-6 were significantly lower in the supernatants of A549 cells pretransfected with NF-κB p65 siRNA ( P lt;0. 05) , while the concentration of MDA markedly decreased ( P lt; 0. 05) , and the activation of SOD increased dramatically ( P lt; 0. 05) . Consequently, the survival rate of A549 in the p65 siRNA group improved( P lt; 0. 05) . Conclusions NF-κB p65 plays a key role in the oxidative stress induced by TNF-α. NF-κB p65 silencing can down-regulate the inflammation and oxidative stress induced by TNF-αand enhance the proliferation of alveolar epithelial cells.
Objective To explore the variation about the application of fast-track surgery and laparoscopy in treatment for colorectal cancer in recent years. To investigate the probability of combining protocols of the two for treatment for colorectal cancer. Methods The clinical and basic literatures of related researches about colorectal treatment of laparoscopy and fast-track surgery were collected and reviewed. Results Compared with the traditional treatment modalities, both of fast-track surgery and laparoscopy used for the treatment of colorectal cancer have better clinical effects. Conclusions Fast-track surgery and laparoscopic techniques used for the treatment of colorectal cancer are feasible, but the combination of the two should be confirmed by further randomized controlled trials.
ObjectiveTo investigate the effects of phenethyl isothiocyanate (PEITC) on apoptosis and proliferation of breast cancer SK-BR-3 cells. MethodsSK-BR-3 cells were treated with different concentrations (0, 10, 30, 50 μmol/L) of PEITC respectively. The proliferation capacity of SK-BR-3 cells was detected by MTT and BrdU staining methods. The cell apoptosis was detected by TUNEL and flow cytometry methods. The protein and mRNA expressions levels of indexes related apoptosis such as Bcl-2, Bax, and MCL-1 and indexes related endoplasmic reticulum stress (ERS) such as PERK, eIF2α, CHOP, IRE1α, ATF6α were detected by Western blot and quantitative real-time PCR (qRT-PCR), respectively. ResultsCompared with the control group (0 μmol/L PEITC treatment group), the results of MTT and BrdU staining methods showed that the proliferations of SK-BR-3 cells in the 10, 30 and 50 μmol/L PEITC treatment group were decreased in turn with the increase of concentration. The results of TUNEL and flow cytometry methods showed that the apoptosis rates of SK-BR-3 cells in the 10, 30 and 50 μmol/L PEITC treatment group were increased in turn with the increase of concentration. The results of Western blot and qRT-PCR methods showed that the protein and mRNA expression levels of anti-apoptotic indexes (Bcl-2, MCL-1) were decreased with the increase of concentration, while the expression levels of protein and mRNA of the pro-apoptotic index (Bax) and ERS-related indexes (PERK, eIF2α, CHOP, IRE1α, ATF6α) increased with the increase of concentration. ConclusionFrom the preliminary results of this study, PEITC can promote the apoptosis of breast cancer SK-BR-3 cells and inhibit cell proliferation, which might be achieved by regulating the expression levels of indexes related apoptosis and ERS.
ObjectiveTo identify causal effects and potential mechanisms of oxidative stress (OS) genes in lung cancer. MethodsOS-related genes were extracted from the GeneCards database. Integration analysis of genome-wide association study (GWAS) data for lung cancer with gene expression and DNA methylation quantitative trait loci (eQTL and mQTL) in blood was performed using the summary data-based Mendelian randomization (SMR) approach to determine the causal relationship between OS genes and lung cancer risk. Colocalization analysis of OS gene QTLs and lung cancer risk loci was performed to gain insight into the potential regulatory mechanisms of lung cancer risk. ResultsA potential causal relationship between OS-related genes and lung cancer was identified by SMR analysis. AGER expression level was found to be associated with lung cancer risk [OR=1.944, 95%CI (1.431, 2.640), P<0.001], and ATF6B expression level was associated with lung cancer risk [OR=1.508, 95%CI (1.287, 1.767), P<0.001]. Meanwhile, ATF6B methylation level was associated with lung cancer risk. ConclusionOS-related genes are associated with lung cancer, which may be a potential site of action for anti-cancer drugs.