Objective To review the current status and problems in the developing scaffolds for the myocardial tissue engineering appl ication. Methods The l iterature concerning the myocardial tissue engineering scaffold in recent years was reviewed extensively and summarized. Results As one of three elements for tissue engineering, a proper scafold is veryimportant for the prol iferation and differentiation of the seeding cells. The naturally derived and synthetic extracellular matrix (ECM) materials aim to closely resemble the in vivo microenvironment by acting as an active component of the developing tissue construct in myocardial tissue engineering. With the advent and continuous refinement of cell removal techniques, a new class of native ECM has emerged with some striking advantages. Conclusion Through using the principle of composite scaffold, computers and other high-technology nano-polymer technology, surface modification of traditional biological materials in myocardial tissue engineering are expected to provide ideal myocardial scaffolds.
ObjectiveTo review the role of stem cell niches in maintaining cardiac stem cells homeostasis, and to foresee its prospects. MethodsThe literature on cardiac stem cells niches was extensively reviewed. The roles of stem cell niches components, extracellular matrix, and secretory factors in maintaining cardiac stem cell homeostasis were analysed and reviewed. ResultsLots of experiments reveal that stem cell niches are able to delay the aging of cardiac stem cells, protect from external damage, keep stem properties, and improve the purity and quantity. However, the mechanism is not fully understood. ConclusionThe stem cell niches have a very bright application prospect in homeostasis, purification, and amplification for the cardiac stem cells, and it needs further study.
ObjectiveBy comparing the difference between different stenosed degree of aortic valve in flow field uniformity and turbulent shear stress (TSS), to explore the relation between flow field uniformity and different stenosed degree of aortic valve, and probe the clinical value for deciding the operation timing, and analyze the possible role of TSS in the progress of the disease.MethodsThe flow field uniformity values and TSS in parasternal long axis plane and apical five cavity plane on each point were measured and calculated by pulse wave Doppler echocardiography technique for 33 patients with different stenosed degree of aortic valve.ResultsThere were significant difference between the different stenosed degree of aortic valve in maximal velocity difference(ΔV max )and TSS( P lt;0.05, 0.01). The more severe the aortic stenosis was, the worse the flow field uniformity was, the lower the TSS was.ConclusionsThere are significant difference between the patients of different stenosed degree of aortic valve in flow field uniformity. Flow field uniformity has important value in classifying the degree of aortic stenosis and deciding the timing of operation. The more severe the aortic stenosis is ,the lower TSS is. It can be thought that low TSS distribution has important role in pathological process of constriction in cardiovascular system diseases.