Abstract: Objective To construct a nesprin-siRNA lentiviral vector(LV-siNesprin), transfect it into bone marrow mesenchymal stem cells (MSCs), and observe morphology changes of MSCs. Methods According to the target gene sequence of nesprin, we designed and synthesized four pairs of miRNA oligo, which were then annealed into double-strand DNA and identified by sequencing. MiRNA interference with the four kinds of plasmids (SR-1,SR-2,SR-3, andSR-4) were transfected into rat vascular smooth muscle cells, and reverse transcriptase chain reaction(RT-PCR) and Western blotting were performed to detect the interference effects and filter out the most effective interference sequence. We used the best interference sequence carriers and pDONR221 to react together to get the entry vectors with interference sequence. Then the objective carrier pLenti6/V5-DEST expressing both entry vectors and lentiviral vectors was restructured to get lentiviral expression vector containing interference sequence (LV-siNesprin+green fluoresent protein (GFP)), which was packaged and the virus titer was determined. LV-siNesprin+GFP was transfected to MSCs, and the expression of nesprin protein(LV-siNesprin+GFP group,GFP control group and normal cell group)was detected by Western blotting. The morphology of MSCs nuclear was observed by 4’,6-diamidino-2-phenylindole (DAPI) stain. The proliferation of MSCs (LV-siNesprin+GFP group,GFP control group and normal group) was detected by 3-(4,5-dimethylthia- zol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) after lentivirus transfected to MSCs at 24, 48, 72, and 96 hours. Results The four pairs of miRNA oligo were confirmed by sequencing. Successful construction of LV-siNesprin was confirmed by sequencing. The best interference with miRNA plasmid selected by RT-PCR and Western blotting was SR-3. Lentiviral was packaged, and the activity of the virus titer of the concentrated suspension was 1×106 ifu/ml. After MSCs were transfected with LV-siNesprin, nesprin protein expression significantly decreased, and the nuclear morphology also changed including fusion and fragmentation. The proliferation rate of MSCs in the LV-siNesprin+GFP group was significantly slower than that of the GFP control and normal cell groups by MTT. Conclusion Nesprin protein plays an important role in stabilizing MSCs nuclear membrane, maintaining spatial structure of MSCs nuclear membrane,and facilitating MSCs proliferation.
Objective To construct recombinant lentiviral vectors of porcine bone morphogenetic protein 2 (BMP-2) gene and to detect BMP-2 gene activity and bone marrow mesenchymal stem cells (BMSCs) osteogenetic differentiation so as to lay a foundation of the further study of osteochondral tissue engineering. Methods BMSCs were isolated from bone marrow of 2-month-old Bama miniature porcines (weighing, 15 kg), and the 2nd generation of BMSCs were harvested for experiments. The porcine BMP-2 gene lentiviral vector was constructed by recombinant DNA technology and was used to transfect BMSCs at multiplicity of infection (MOI) of 10, 25, 50, 100, and 200, then the optimal value of MOI was determined by fluorescent microscope and inverted phase contrast microscope. BMSCs transfected by BMP-2 recombinant lentiviral vectors served as experimental group (BMP-2 vector group); BMSCs transfected by empty vector (empty vector group), and non-transfected BMSCs (non-transfection group) were used as control groups. RT-PCR, immunohistochemistry staining, and Western blot were performed to detect the expressions of BMP-2 mRNA and protein. Then the BMSCs osteogenesis was detected by alkaline phosphatase (ALP) staining, ALP activities, and Alizarin red staining. Results The recombinant lentiviral vectors of porcine BMP-2 gene was successfully constructed and identified by RT-PCR and gene sequencing, and BMSCs were successfully transfected by BMP-2 recombinant lentiviral vectors. Green fluorescent protein could be seen in the transfected BMSCs, especially at MOI of 100 with best expression. The immunohistochemistry staining and Western blot showed that BMSCs transfected by BMP-2 recombinant lentiviral vectors could express BMP-2 protein continuously and stably at a high level. After cultivation of 2 weeks, the expression of ALP and the form of calcium nodules were observed. Conclusion The porcine BMP- 2 gene lentiviral vector is successfully constructed and transfected into the BMSCs, which can express BMP-2 gene and protein continuously and stably at a high level and induce BMSCs differentiation into osteoblasts.
Objective To investigate the feasibility of recombinant lentivirus (LVs) mediated hyperpolarization- activated cyclic nucleotide-gated cation channel 4 (HCN4) gene transfecting rat bone mesenchymal stem cells (BMSCs) so as to construct the biological pacemaker cells. Methods Sprague Dawley rats at the age of 3-5 weeks were selected to isolate and culture BMSCs using modified whole bone marrow adherent culture method. LVs was used as carrier, and enhanced green fluorescent protein (EGFP) as marker to build LVs-HCN4-EGFP virus liquid. The BMSCs at passage 3 were transfected with LVs-HCN4-EGFP virus liquid (experimental group) and LVs-EGFP null virus liquid (control group). Fluorescence microscope was used to observe the green fluorescent protein expression after 24, 48, and 72 hours of transfection; Western blot method was used to detect the HCN4 protein expression. The electrophysiology was used to detect the pacemaker current in the experimental group. Results After transfection, BMSCs in the experimental group showed normal morphology and good growth; scattered green fluorescence could be seen at 48 hours under fluorescence microscope, with a transfection efficiency of about 10%; the fluorescence expression increased slightly, with the transfection efficiency of 20% to 25% at 72 hours. While no expression of green fluorescence was seen in the control group. Western blot results showed that the same band expression as a relative molecular mass of HCN4 protein were found at 72 hours after transfection in the experimental group, only weak expression of protein band was seen in the control group; the gray value of the experimental group (33.75 ± 0.41) was significantly higher than that of the control group (23.39 ± 0.33) (t=17.524, P=0.013). In the experimental group, the pacemaker current was recorded, and it could be blocked by CsCl, in accordance with the characteristics of pacemaker current. Conclusion The recombinant LVs mediated HCN4 gene is successfully transfected into rat BMSCs, and the expression of HCN4 protein and the pacemaker current can be detected.
Objective To construct the lentiviral vector containing homo sapiens forkhead box C2 (Foxc2) gene and to detect its expression in bone marrow mesenchymal stem cells (BMSCs) of rabbits. Methods Human Foxc2 gene coding region fragment was obtained by RT-PCR and then cloned into the plasmid of LV-green fluorescent protein (GFP) to prepare Foxc2 lentiviral plasmid. Foxc2 lentiviral plasmid, pGC-LV, pHelper1.0, and pHelper2.0 were co-transfected into 293T cells to obtain recombinant virus containing Foxc2 gene. The lentiviral titer was detected. BMSCs were isolated from bone marrow of rabbit and infected with Foxc2 recombined lentiviral, then the optimum multiplicity of infection (MOI) was determined by detecting the intensity of fluorescence expression. The expression of Foxc2 in the infected BMSCs was determined at 1, 3, and 7 days after transfection by inverted fluorescence microscope and Western blot. After osteogenic induction, Alizarin red staining was done to observe the formation of mineralized nodule. Results The Foxc2 recombinant lentiviral vector was constructed and was confirmed by restriction enzyme digestion and sequencing analysis. It could efficiently transfect 293T cells and express in 293T cells. The lentiviral titer was 2 × 108 TU/mL. The optimum MOI was 200. The inverted fluorescence microscope observation showed that the Foxc2 gene expressed in 84.5% ± 4.8% of infected BMSCs at 3 days after transfection. The expression of Foxc2 in infected BMSCs was stable and high, and increased gradually within 7 days after transfection by Western blot. At 2 weeks after osteogenic induction, Alizarin red staining showed that there were a large number of red calcified matrix deposition in the cytoplasm. Conclusion Foxc2 recombined lentivirus with high viral titer is successfully constructed and packaged, and the Foxc2 gene can be transfected into BMSCs with stable and high expression of Foxc2 in infected cells, and these cells may be applied for gene therapy of avascular necrosis of the femoral head.
【 Abstract】 Objective To construct a lentiviral expression vector carrying Nogo extra cellular peptide residues 1-40(NEP1-40) and to obtain NEP1-40 efficient and stable expression in mammalian cells. Methods The DNA fragment ofNEP1-40 coding sequence was ampl ified by PCR with designed primer from the cDNA l ibrary including NEP1-40 gene, and then subcloned into pGC-FU vector with in-fusion technique to generate the lentiviral expression vector, pGC-FU-NEP1-40. The positive clones were screened by PCR and the correct NEP1-40 was confirmed by sequencing. Recombinant lentiviruses were produced in 293T cells after the cotransfection of pGC-FU-NEP1-40, and packaging plasmids of pHelper 1.0 and pHelper 2.0. Green fluorescent protein (GFP) expression of infected 293T cells was observed to evaluate gene del ivery efficiency. NEP1-40 protein expression in 293T cells was detected by Western blot. Results The lentiviral expression vector carrying NEP1-40 was successfully constructed by GFP observation, and NEP1-40 protein expression was detected in 293T cells by Western blot. Conclusion The recombinant lentivirus pGC-FU-NEP1-40 is successfully constructed and it lays a foundation for further molecular function study of NEP1-40.
Objective To construct human recombinant lentiviral expression vector of microRNA-210 (miR-210)and to explore the over-expression of miR-210 on the capillary formation in human umbilical vein endothelial cells 12 (HUVE-12). Methods The recombinant lentiviral expression vector of pGCSIL-green fluorescent protein (GFP)-pre-miR-210 wasconstructed by molecular cloning and transfected to HUVE-12 (LV-miR-210-GFP group), only pGCSIL-GFP was transfectedas control group (LV-GFP group). The miR-210 expression activity was evaluated by GFP reporter through fluorescencedetection and real-time fluorescent quantitative PCR. The ephrinA3 protein expression was measured by flow cytometry. Theconcentration of vascular endothelial growth factor (VEGF) in culture supernatant was determined by ELISA. The cells werecultured in 96-well culture plate coated with Matrigel to assess the abil ity of capillary formation. Results The recombinantplasmid pGCSIL-GFP-pre-miR-210 was confirmed by restriction endonuclease analysis and DNA sequencing. Fluorescencedetection showed that the fluorescence intensity of GFP was highest between 48 and 72 hours after transfection. Real-timefluorescent quantitative PCR showed that the miR-210 expression of LV-miR-210-GFP group was 9.72 times higher than thatin LV-GFP group (t= —11.10,P=0.00). Flow cytometry analysis showed that the positive cell rate of enphrinA3 in LV-miR-210-GFP group (12.52% ± 0.67%) was significantly lower than that in LV-GFP group (73.22% ± 1.45%) (t= —66.12,P=0.00).The concentration of VEGF in supernatant in LV-miR-210-GFP group was significantly higher than that in LV-GFP group[(305.29 ± 16.52) pg/mL vs. (42.52 ± 3.11) pg/mL, t= —27.06,P=0.00]. In vitro capillary-l ike formation assay showed that thenumber of capillaries was significantly larger in LV-miR-210-GFP group than in LV-GFP group (17.33 ± 6.33 vs. 6.33 ± 2.33,t= —2.83,P=0.04). Conclusion The recombinant lentiviral expression vector of miR-210 is constructed successfully andHUVE-12 over-expressing miR-210 can significantly increase the capillary formation, which facil itates further study on themolecular functions of miR-210 in angiogenesis.
Objective To construct recombinant lentiviral expression vectors of porcine transforming growth factor β1 (TGF-β1) gene and transfect bone marrow mesenchymal stem cells (BMSCs) so as to provide TGF-β1 gene-modified BMSCs for bone and cartilage tissue engineering. Methods The TGF-β1 cDNA was extracted and packed into lentiviral vector, and positive clones were identified by PCR and gene sequencing, then the virus titer was determined. BMSCs were isolated frombone marrow of the 2-month-old Bama miniature pigs (weighing 15 kg), and the 2nd and 3rd generations of BMSCs wereharvested for experiments. BMSCs were then transfected by TGF-β1 recombinant lentiviral vectors (TGF-β1 vector group)respectively at multi pl icity of infection (MOI) of 10, 50, 70, 100, and 150; then the effects of transfection were detected bylaser confocal microscope and Western blot was used to determine the optimal value of MOI. BMSCs transfected by empty vector (empty vector group) and non-transfected BMSCs (non-transfection group) were used as control group. RT-PCR, immunocytochemistry, and ELISA were performed to detect the expressions of TGF-β1 mRNA, TGF-β1 protein, and collagen type II. Results Successful construction of recombinant lentiviral vectors of porcine TGF-β1 gene was identified by PCR and gene sequencing, and BMSCs were successfully transfected by TGF-β1 recombinant lentiviral vectors. Green fluorescence was observed by laser confocal microscope. Western blot showed the optimal value of MOI was 70. The expression of TGF-β1 mRNA was significantly higher in TGF-β1 vector group than in empty vector group and non-transfection group (P lt; 0.05). Immunocytochemistry results revealed positive expression of TGF-β1 protein and collagen type II in BMSCs of TGF-β1 vector group, but negative expression in empty vector group and non-transfection group. At 21 days after transfection, high expression of TGF-β1 protein still could be detected by ELISA in TGF-β1 vector group. Conclusion TGF-β1 gene can be successfully transfected into BMSCs via lentiviral vectors, and long-term stable expression of TGF-β1 protein can be observed, prompting BMSCs differentiation into chondrocytes.
Objective To construct inducible lentiviral vector containing human bone morphogenetic protein 2 (hBMP-2) gene and to study its expression in human umbil ical cord blood mesenchymal stem cells (HUMSCs). Methods hBMP-2 gene was ampl ified by PCR from a plasmid and was cloned into pDown by BP reaction. pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-reverse transactivator (rtTA) were obtained with GATEWAY technology, and then were sequenced and analyzed by PCR. The recombinant vectors were transfected into 293FT cells respectively through l ipofectamine, and the lentiviral viruses were harvested from 293FT cells, then the titer was determined. Viruses were used to infect HUMSCs in tandem. In order to research the influence of induction time and concentration, one group of HUMSCs was induced by different doxycl ine concentrations (0, 10, 100 ng/mL, and 1, 10, 100 μg/mL) in the same induction time (48 hours), and the other by the same concentration (10 μg/mL) in different time points (12, 24, 48, and 72 hours). The expression of target gene hBMP-2 was indentified by ELISA method. After 2-week osteogenic induction of transfected HUMSCs, the mineral ization nodes were detected with Al izarin bordeaux staining method. Results Therecombinant inducible lentiviral vectors (pLV/EXPN2-Neo-TRE-hBMP-2 and pLV/EXPN2-Puro-EF1A-rtTA) were successfully constructed. The lentiviruses were also obtained and mediated by 293FT cells, and the virus titers were 3.5 × 108 TU/mL and 9.5 × 107 TU/mL respectively. HUMSCs could expression hBMP-2 by induction of doxycycl ine. The expression of hBMP-2 reached the peak at 10 μg/mL doxycl ine at 48 hours of induction. After 2-week osteogenic induction, a lot of mineral ization nodes were observed. Conclusion The recombinant inducible lentiviral vectors containing hBMP-2 gene can be successfully constructed, which provide an effective and simple method for the further study of stem cells and animal experiment in vivo.
Objective To construct the lentiviral vector to co-express enhanced green fluorescent protein (EGFP) gene and human insul in (insulin) gene, and to explore the condition to transfect human umbil ical cord mesenchymal stem cells (hUCMSCs) so as to lay a foundation for tissue engineered adipose reconstruction and transplantation in vivo infuture. Methods The insulin gene was cloned to lentiviral expression vector with EGFP [pLenti6.3-internal ribosome entrysite (IRES)-EGFP] by recombinant DNA technology, the positive clones were screened, and lentiviral packaged systems and target gene plasmid were co-transfected to package virus in 293T cells by lipofectin. The reporter gene expression was observed by fluorescent inverted phase contrast microscope, virus supernatant was collected, purificated and concentrated, and the titer of recombinant viruses was determinated. hUCMSCs from umbilical cord tissue of mature neonates were isolated and cultured by different multiple of infection (MOI, 0, 1, 3, 5, 7, 10, 15, and 20). By recombinant lentiviral infected hUCMSCs with reporter gene green fluorescent protein expression, the best MOI was screened; recombinant lentiviral infected hUCMSCs at the best MOI, then real-time PCR and Western blot methods were appl ied to detect insulin gene and insul in protein expression levels in cells. Results The recombinant lentiviral vector of co-expressing insulin gene and EGFP gene (pLenti6.3-insulin-IRESEGFP) was successfully constructed. Virus could be packaged, purificated and concentrated successfully. The virus titer was 1.3 × 108 TU/mL. The best MOI was 10 and the transfer efficiency was up to 90% in the same time. Real-time PCR results showed that insulin gene expression of transfected group was positive and non-transfected group was negative; Western blot detection confirmed that insul in protein expression of transfected group was positive in cells and supernatant, but that of non-transfected group was both negative. Conclusion Lentiviral vector pLenti6.3-insulin-IRES-EGFP carrying recombinant insulin gene could effectively transfect hUCMSCs and express insul in protein.
Objective To construct lentiviral vector carrying the human hepatocyte growth factor (hHGF) gene, and then to get hHGF gene/modified bone marrow mesenchymal stem cells (BMSCs) by infecting the BMSCs. Methods The hHGF gene was obtained with PCR from pcDNA-hHGF plasmid. The recombination lentiviral vector plasmid hHGF was constructed with Age I digestion and gene recombinant, then was identified with PCR and sequencing. Mediated by Lipofectamine2000, the three plasmids system of lentiviral vector including pGC-E1-hHGF, pHelper 1.0, and pHelper 2.0 was co-transfected to 293T cells to produce hHGF gene. The supernatant was collected and concentrated by ultracentrifugation and the titer of lentivirus was measured by real-time quantitative PCR. The BMSCs were infected by the constructed lentivirus and the multipl icities of infection (MOI) was identified with fluorescent microscope, the efficiency of infection with flow cytometry (FCM) analysis, the hHGF level with ELISA analysis, and the expression of hHGF gene with RT-PCR. Results Lentiviral vector carrying hHGF gene was constructed successfully. The titer of lentivirus was 1 × 108 TU/mL. The infection efficiency of BMSCs by hHGF lentiviral was high and reached 98% by FCM, and the best MOI was 10. A great mount of green fluorescence was observed with the fluorescent microscope at 28 days after infection. Peak concentration of hHGF secreted by BMSCs/hHGF reached 40.5 ng/mL at 5 days. The concentration could maintain a high level until 28 days after infection. RT-PCR showed that BMSCs/hHGF could express hHGF gene. Conclusion By lentiviral vector, hHGF gene was integrated into BMSCs genome, and it can express stably.