ObjectiveTo evaluate the effectiveness of one stage vacuum sealing drainage (VSD) combined with bi-pedicle sliding flap transplantation in repairing open tibiofibular fracture and soft tissue defects of the lower leg. MethodsTwenty-five patients with open tibiofibular fracture and soft tissue defects of the lower leg were treated by VSD combined with bi-pedicle sliding flap transplantation between January 2012 and July 2014. There were 18 males and 7 females, aged 12-65 years (mean, 35.2 years). The injury causes included traffic accident injury (20 cases), falling injury from height (3 cases), and heavy pound injury (2 cases). The left side was involved in 14 cases, the right side in 8 cases, and both sides in 3 cases. According to Gustilo classification, injury was rated as type II (6 lower extremities), type III a (19 lower extremities), and type III b (3 lower extremities). The anterior tibial defect area after debridement ranged from 6 cm×3 cm to 12 cm×5 cm. The course of injury and admission was 1-18 hours (mean, 4.5 hours). An anterior tibial bi-pedicle sliding flap of 24 cm×6 cm to 48 cm×8 cm was designed to cover the wound and tibia fracture was fixed with minimally invasive internal fixation. After suturing the anterior tibial wound without tension, the flap was transferred forward. The exposed fibula was fixed with reconstruction plate. The remained wound was covered by VSD. Continuously antibiotic saline irrigation was applied postoperatively. After 15 days, the VSD dressing was removed and free skin graft was used to cover the remained wound. ResultsAfter the VSD dressing was removed, the wounds and tension-reduced wound of 18 lower extremities completely healed. Unhealing wounds were covered by skin graft in 9 lower extremities. Infection occurred in 1 lower extremity and was cured after treated with antibiotics. All the wounds healed and flaps survived. The patients were followed up 6-24 months (mean, 18 months). The fractures union was confirmed by X-ray and the average union time was 3.2 months (range, 2.5-5 months). ConclusionThe application of one stage VSD combined with bi-pedicle sliding flap transposition is a simple and safe treatment regimen for Gustilo type II-IIIa open tibiofibular fracture and soft tissue defects of the lower leg. It has the advantages of few complications and low costs, short hospitalization, and good effectiveness.
Objective To explore the histochemical staining for distinguishing and local izing nerve fibers and fascicles at histological level in three-dimensional reconstruction of peri pheral nerves. Methods The right median nerve was harvested from one fresh cadaver and embedded in OCT compound. The sample was serially horizontally sl iced with 6 μm thickness. All sections were stained with Karnovsky-Roots method (group A, n=30) firstly and then stained with toluidine blue (group B, =28) and Ponceau 2R (group C, n=21) in proper sequence. The results of each step were taken photos (× 100). After successfully stitching, the two-dimensional panorama images were compared, including texture feature, the number and aver gray level of area showing acetylchol inesterase (AchE) activity, and result of auto microscopic medical image segmentation. Results In groups A, B, and C, the number of AchE-positive area was (21.63 ± 4.06)× 102, (20.64 ± 3.51)× 102, and (20.54 ± 5.71)× 102, respectively, showing no significant difference among 3 groups (F=0.64, P=0.54); the mean gray level was (1.41 ± 0.06)× 102, (1.10 ± 0.05)× 102, and (1.14 ± 0.07)× 102, respectively, showing significant differences between group A and groups B and C (P lt; 0.001). In the image of group A, only AchE-positive area was stained; in the image of group B, myelin sheath was obscure; and in the image of group C, axons and myelin sheath could be indentified, the character of nerve fibers could be distinguished clearly and accurately, and the image segmentation of fascicles could be achieved easier than other 2 images. Conclusion The image of Karnovsky-Roots-toluidine blue-Ponceau 2R staining has no effect on the AchE-positive area in the image of Karnovsky-Roots staining and shows better texture feature. This improved histochemical process may provide ideal image for the three-dimensional reconstruction of peri pheral nerves.
Objective To explore and solve the key technologies of the three dimensional (3D) visual ization reconstruction of functional fascicular groups inside long segmented peri pheral nerve. Methods A 20 cm ulnar nerve from upper arm of fresh adult dead body was embedded by OCT with four pieces of woman’s hair which was used as locating material, then the samples were serially horizontally sl iced into 400 sl ices with 15 μm thickness and 0.5 mm interval. All sl iceswere stained with acetylcholinesterase (AchE) histochemical staining. After that, the 2D panorama images of the same sl ice were obtained with Olympus stereomicroscope and MSHOT MD90 micro figure image device before and after AchE staining. Using the layer processing technique of Photoshop image processing software, the recomposition images including complete 4 location pots were obtained, based on which the algorithm of optimized least square support vector machine (Optimized LS-SVM) and space transformation method was used to fulfill automatic registration. Finally, with artificial assistant outline obtaining, the 3D visual ization reconstruction model of functional fascicular groups of 20 cm ulnar nerve was made using Amira 4.1, and the effects of reverse reduction and the suitabil ity of 3D reconstruction software were evaluated. Results The two-time imaging technique based on the layer process of Photoshop image processing software had the advantages: the image outline had high goodness of fit; the locating pots of merging image was accurate; and the whole procedure was simple and fast. The algorithm of Optimized LS-SVM had high degree of accuracy, and the error rate was only 8.250%. The 3D reconstruction could display the changes of the chiastopic fusion of different nerve functional fascicular groups directly. It could extract alone, merge and combine arbitrarily, and revolve at any angles. Furthermore, the reverse reduction on arbitrarily level dissection of the 3D model was very accurately. Conclusion Based on the two-time imaging technique and computer image layer processing technology, the compute algorithm of auto-registration can be developed and appl ied to 3D visual ization reconstruction of long segmented peripheral nerve. The technological processes is fast, and the reconstruction effect is good.
Objective To investigate the feasibil ity of building the 3D reconstruction of short segment common peroneal nerve functional fascicles based on serial histological sections and computer technology. Methods Five cm of the common peroneal nerve in the popl iteal fossa, donated by an adult, was made into the serial transverse freezing sections(n=200) at an interval of 0.25 mm and 10 μm in thickness per section. Acetylchol inesterase staining was adopted and the nerve fascicles were observed by microscope. 2D panorama images were acquired by high-resolution digital camera under microscope (× 100) and mosaic software. Different functional fascicles were distinguished and marked on each section. The topographic database was matched by image processing software. The 3D microstructure of the fascicular groups of 5 cm common peroneal nerve was reconstructed using Amira 3.1 3D reconstruction software. Results Based on microanatomy and the results of acetylchol inesterase staining, this segmented common peroneal nerve functional fascicles was divided into sensory tract, motor tract, mixed tract and motor-predominating mixed tract. The cross merging was not evident in the nerve fascicles between deep peroneal nerve and superficial peroneal nerve, but existed within the functional fascicles of the deep peroneal nerve and the superficial peroneal nerve. The results of 3D reconstruction reflected the 3D structure of peripheral nerve and its interior functional fascicles factually, which displayed solely or in combination at arbitrary angles. Conclusion Based on serial histological sections and computer technology, the 3D microstructure of short-segment peripheral nerve functional fascicles can be reconstructed satisfactorily, indicating the feasibil ity of building 3D reconstruction of long-segmental peripheral nerve functional fascicles.
【Abstract】 Objective To observe the distribution feature of nerve bundles in C7 nerve anterior and posterior division end. Methods The brachial plexus specimen was harvested from 1 fresh adult cadaver. After C7 nerve was confirmed, the distal end of anterior and posterior division was dissected and embedded by OCT. Then the samples were serially horizontally sliced with each 10 μm deep. After acetylcholinesterase (AChE) histochemical staining, the stain characteristics of different nerve fiber bundles were observed and amount of the nerve fiber bundles were counted under optic-microscope. At last, the imaging which were collected were three-dimensional (3-D) reconstructed by using Amira 4.1 software. Results There was no obvious difference in the stain between the anterior and posterior divisions. The running of the nerve fiber bundles were dispersive from proximal end of nerve to distal end of nerve. Nerve fiber bundles of anterior division were mainly sensor nerve fiber bundles, which located in medial side. Nerve fiber bundles of posterior division were mainly moter nerve fiber bundles, having no regularity in the distribution of nerve fiber bundles. The total number of nerve fiber bundles in distal end of anterior division was 7.85 ± 1.04, the number of motor nerve fiber bundles was 2.85 ± 0.36, and the number of sensor nerve fiber bundles was 5.13 ± 1.01. The total number of nerve fiber bundles in distal end of posterior division was 9.79 ± 1.53, the number of motor nerve fiber bundles was 6.00 ± 0.69, and the number of sensor nerve fiber bundles was 3.78 ± 0.94. There were significant differences in the numbers of motor and sensor nerve fiber bundles between anterior and posterior divisions (P lt; 0.05). The microstructure 3-D model was reconstructed based on serial slice through Amira 4.1. The intercross and recombination process of nerves bundles could be observed obviously. The nerve bundle distribution showed cross and combination. Conclusion Nerve fiber bundles of anterior division are mainly sensor nerve fiber bundles and locate in medial side. Nerve fiber bundles of posterior division are mainly motor nerve fiber bundles, which has no regularity in the distribution of nerve fiber bundles. The 3-D reconstruction can display the internal structure feature of the C7 division end.
ObjectiveTo analyze the effectiveness of proximal humeral internal locking system (Philos) plate for proximal humerus fracture. MethodsThirty-three patients with proximal humerus fracture were treated with open reduction and internal fixation with Philos plate between January 2009 and January 2014. There were 19 males and 14 females, aged 23-89 years (mean, 56.6 years). The left side was involved in 15 cases, and the right side in 18 cases. The injury causes included falling in 20 cases and traffic accident in 13 cases. All cases received X-ray and CT scan and three-dimensional reconstruction before operation. According to the Neer classification, 8 cases were rated as two-part fractures, 15 cases as three-part fractures, and 10 cases as four-part fractures. The interval time between injury and surgery was 1-7 days (mean, 3.67 days). Postoperative functional outcome was evaluated using the Constant-Murley score. ResultsInfection and liquefaction occurred in 2 cases respectively, which was cured after corresponding treatment; primary healing of wound was obtained in the other 29 cases. Five patients had shoulder pain. The patients were followed up 11-47 months (mean, 33 months). The mean time of fracture union was 7.5 months (range, 5-9 months) on the X-ray films. Humeral head necrosis occurred in 2 patients with Neer four-part fractures, and internal fixation failure occurred in 3 patients (2 screw broken and 1 plate broken) with four-part fractures (2 cases) and three-part fractures (1 case), which was cured after conservative treatment. At last follow-up, the mean Constant-Murley score was 70.5 (range, 42-90); the results were excellent in 3 cases, good in 21 cases, moderate in 6 cases, and poor in 3 cases. ConclusionSatisfactory results can be expected for proximal humeral fracture by using of the proximal humeral internal locking system plate based on strict indication and early rehabilitation training.
Objective To study the hemodynamic characteristics of concealed perforator flap in mini-pigs by ultrasonic Doppler technique. Methods Seven 7-month-old mini-pigs, weighing 20-25 kg, were included in the study. The saphenous artery perforator flap (group A, n=4), saphenous artery concealed perforator flap (group B, n=5), and saphenous artery concealed perforator flap combined with sarcolemma (group C, n=5) models were established randomly on both hind limbs of pigs. The pigs and flap survival conditions were observed after operation. The percentage of flap survival area was calculated by Photoshop CS5 software at 5 days after operation. Ultrasonic Doppler technique was performed on the flaps before operation and at immediate, 3 days, and 5 days after operation to record the hemodynamic changes of the flaps. The hemodynamic indicators of saphenous artery (inner diameter, peak systoli velocity, resistance index, and blood flow) and saphenous vein (inner diameter, maximum velocity, and blood flow) were recorded. Results At 1 day after operation, 1 pig died of infection, and the rest survived until the experiment was completed. Finally, the 3 flaps of group A, 4 of group B, and 5 of group C were included in the study. The flaps of the 3 groups all showed swelling after operation, which was most significant at 3 days. At 3 days after operation, the flaps in group B showed partial bruising and necrosis. At 5 days after operation, the flaps in groups A and C were basically alive, and the necrosis area of flap in group B increased further. The percentage of flap survival area in groups A, B, and C were 99.7%±0.5%, 74.8%±26.4%, and 100%, respectively. The percentage of flap was significantly lower in group B than in groups A and C (P<0.05). There was no significant difference between groups A and C (P>0.05). There were significant differences in the hemodynamic indicators of saphenous artery and vein between different time points in 3 groups (P<0.05). There was no significant difference in each indicator between groups at each time point (P>0.05). Conclusion Both the saphenous artery concealed perforator flap and the flap combined with sarcolemma have stable blood flow, but the survival area of the latter was better than the former.
【Abstract】 Objective To report cl inical experience in the use of temporary intravascular shunts (TIVS) for quickrestoration of perfusion to the extremity with major vascular injury. Methods Between August 2009 and March 2011, TIVSwas applied temporarily to restore blood perfusion to the extremity in 6 patients with major extremity vascular structure injury secondary to trauma (4 patients) or tumor resection (2 patients), who would received vascular transplantation and underwent long ischemia. The patterns of vascular shunts included external carotid artery-subclavian artery, axillary artery-axillary artery, axillary vein-subclavian vein, brachial artery-brachial artery, brachial vein-brachial vein, brachial artery-radial artery, femoral artery-popliteal artery, and popliteal artery-posterior tibial artery. After TIVS, extensive debridement, fracture fixation, or tumor excision was performed. Then the shunted tubes were removed, and the vessels were repaired definitly. Six vessels were repaired by transplanting the great saphenous veins; one vessel was anastomosed directly without tension; and one vessel was repaired by artificial vascular graft. Results All shunted tubes were successfully established within 5 to 10 minutes (mean, 8.2 minutes). The duration of bypass ranged from 67 to 210 minutes. After establishment of TIVS, blood perfusion to the affected limb was improved. When shunted tubes were removed, thrombosis and partial obstruction occurred in one who accepted amputation, and the others kept patency. No loosening of tubes and haemorrhage occurred. At 2-15 months of follow-up, affected limbs had good blood supply. Conclusion TIVS is rapid and simple, which can quickly restore blood perfusion to the extremity with major vascular injury and shorten the ischemic time of the affected extremity.