Objective To investigate the effect of batroxobin on the blood-retinal barrier (BRB) and vascular endothelial growth factors (VEGF) in diabetic rats. Methods Sixty Sprague-Dawley rats were used to establish diabetic models by intraperitoneal injecting with streptozotocin (60 mg/kg), and were divided into 3 groups: diabetic group (n=20), batroxobin (40 mg/kg) group (n=20) and batroxobin (20 mg/kg) group (n=20). Twenty-five else rats were in control group. All of the rats were executed 7 days later. The function of BRB was observed by Evans blue method. Results concentration of VEGF protein was detected by enzyme-linked immunoabsorbert assay (ELISA). The results of each group were compared. Results The content of BRB leaked into retina was obvious lower in the control group than which in the other 3 diabetic groups(Plt;0.01). There was no significant difference of the content of Evans blue between the two groups with different dosage of batroxobin (P>0.05). The content of Evans blue was lower in the 2 diabetic groups with different dosage of batroxobin than which in the control group (Plt;0.05). The content of VEGF in retina was obviously lower in control group and 2 diabetic groups with different dosage of batroxobin than which in the diabetic group (Plt;0.01), and obviously lower in batroxobin (40 mg/kg) diabetic group than which in the control group (P=0.01). The content of VEGF in control group and batroxobin (20 mg/kg) diabetic group (P=0.06) didnprime;t differ much, which occurred similarly in batroxobin diabetic groups with different dosage (P=0.78). Conclusions Batroxobin may alleviate the damage of function of BRB in diabetic rats and reduce the expression of VEGF, which suggests that batroxobin can protect the function of BRB to a certain extent. (Chin J Ocul Fundus Dis, 2006, 22: 16-19)
Objective To observe the effects of subretinal transplantation of rat mesenchymal stem cells (rMSCs) on Sodium Iodate (SI)induced retinal degeneration. Methods One hundred and twenty BrownNorway (BN) rats were divided into three groups including SI injection group,rMSCs transplantation group and normal control group, each with 40 rats. The retinal degeneration was induced by caudal vein injection of SI. The retinal pigment epithelium(RPE)and neural retinal were evaluated by ocular fundus photograph, fluorescein fundus angiography (FFA),electroretinogram (ERG) and histological approach, and TUNEL(terminal deoxynucleotidyl transferasemediated dUTP nick end labeling ). CMDiIprelabeled primary rMSCs were transplanted into the subretinal space of SIinduced rats. The survival, integration, and differentiation of rMSCs were observed between 14 day to 60 day after the transplantation.Results The rat retinal function was gradually reduced after14 days of SI injection, with a timedependent manner. After the RPE cells were damaged,the outer segments of photoreceptors became disrupted and shortened until karyopyknosis. The nuclear morphology and positive TUNEL labeling indicated that the death of photoreceptor cells was apoptosis. After rMSCs transplantation, CMDiI labeled donor cells were observed to be scattered in the subretinal space and expressed RPE cell markers. Average amplitude of b wave and Ops (oscillation potential) in ERG improved 27.80%,59.38% respectively after rMSCs transplantation.Conclusions Transplanted rMSCs can survive in subretinal space and differentiate into RPE.