ObjectiveTo report the clinical findings and RS1 gene mutation analysis of a Chinese family with X-linked juvenile retinoschisis (XLRS). MethodsThe pedigree of this XLRS family was studied. Nine individuals (10 eyes of 6 males, 6 eyes of 3 females), including the proband, received ocular examination, fundus photography and optical coherence tomography (OCT). Direct DNA sequencing of the 6 exons of RS1 gene was used to detect the RS1 mutation in 12 family members. ResultsThe present pedigree included 15 members of three generations. Among them, 5 male members were diagnosed with XLRS. The retina of other 4 family members were normal, including 1 male (2 eyes) and 3 females (6 eyes). Visual acuity of these 5 patients ranged from hand movement to 0.5 and both eyes of them were involved. The age when visual acuity begins to decrease was all less than 10 years. Fundus color photographic examination showed macular radial cystoid retinoschisis and retinoschisis of the peripheral retina. OCT images showed retinoschisis in macular regions (8 eyes) or peripheral retina (6 eyes). Genetic testing showed that 1 male had no mutation in RS1 gene (p.Gly109Val). All 5 patients had a point mutation (c.326G>T) at exon 4 of RS1 gene, which cause the 109th amino acid changed from glycine to valine in the RS1 protein. A 3-year-old kid also had this mutation. The 3 females with normal retina had heterozygous mutations of Gly109Val, so they are the mutation carriers. ConclusionThe novel p.Gly109Val mutation is the causing mutation in this Chinese family with X-linked juvenile retinoschisis.
Objective To determine the association of -429T/C and G1704T polymorphisms in the receptor for advanced glycation end products gene with proliferative diabetic retinopathy (PDR). Methods Case-control study. From the Beijing Desheng Diabetic Eye Study cohort of 1467 patients with type 2 diabetes mellitus (T2DM),atotal of 97 patients with PDR and 105 diabetic patients without retinopathy (DWR, duration of diabetes 15 years) were included for this study. Questionnaires were collected and general ophthalmologic examinations were performed. Biochemical analysis was conducted. DNA was extracted from peripheral venous blood. The -429T/C and G1704T single nucleotide polymorphisms were detected by the means of PCR-restrication fragment length polymorphisms. Results The frequency distribution of -429T/C in DWR group was 81.0% in TT, 16.1% in TC, 2.9% in CC. The frequency distribution of -429T/C in PDR group was 77.3% in TT, 20.6% in TC, 2.1% in CC. There was no significant statistical difference between the two groups (χ2=0.40, P > 0.05). Frequency of the -429T/C minor alleleCin the DWR and PDR group were 11.0% and 12.4%, respectively, with no significant statistical difference between the two groups (χ2=0.20,P > 0.05). The frequency distribution of G1704T in DWR group was 66.7% in GG, 29.5% in GT, 3.8% in TT. The frequency distribution of G1704T in PDR group was 78.4% in GG, 21.6% in GT. There was no significant statistical difference between the two groups (χ2=3.44, P > 0.05). Frequency of the G1704T minor alleleTin the DWR and PDR group were 18.6% and 10.8%, respectively, in which significant difference was found within the two groups (χ2=4.79, OR=1.88,95%CI: 1.06 - 3.33, P > 0.05). Conclusions G1704T polymorphism is associated with PDR presence and 1704G allele may increase the risk of PDR.