Objective To investigate the physiological effects of different oxygen injection site on ventilatory status and oxygenation during noninvasive positive pressure ventilation ( NPPV) with portable noninvasive ventilators. Methods A prospective crossover randomized study was performed. Oxygen injection site was randomized into the outlet of the ventilator, the connection site between mask and circuit, and the mask under the condition of leak port immobilized in the mask. Oxygen flow was retained in the baseline level at the initial 5 to 10 minutes, and adjusted to obtain arterial oxygen saturation measured by pulse oximetry ( SpO2 ) ranging from 90% to 95% after SpO2 remains stable. SpO2 at the initial 5 to 10 minutes, oxygen flow, ventilatory status, oxygenation, hemodynamics and dyspnea indexes at0. 5 hour, 1 hour, and 2 hours of NPPV were compared between different oxygen injection sites. Results 10 patients were recruited into the study. Under the condition of the same oxygen flow, SpO2 with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit [ ( 98.9 ±0.9) % vs. ( 96.9 ±1.1) % , P =0. 003] , whereas SpO2 with oxygen injection site in the connection site between mask and circuit was significantly higher than that with oxygen injection site in the mask [ ( 96.9 ±1.1) % vs. ( 94.1 ±1.6) %, P = 0.000] . Oxygen flow with oxygen injection site in the mask was statistically higher than that with oxygen injection site at other sites ( P lt; 0.05) . Arterial oxygen tension/ oxygen flow with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit ( 67.9 ±31.1 vs. 37.0 ±15.0, P =0.007) , and than that with oxygen injection site in the mask ( 67.9 ± 31.1 vs. 25.0 ±9.1, P = 0.000) . pH, arterial carbon dioxide tension, hemodynamics and dyspnea indexes were not significantly different between different oxygen injection sites ( P gt; 0.05) .Conclusions When portable noninvasive ventilator was applied during NPPV, oxygen injection site significantly affects improvement of oxygenation, and shows a trend for affecting ventilatory status and work of breathing. When the leak port was immobilized in the mask, the nearer oxygen injection site approaches the outlet of the ventilator, the more easily oxygenation is improved and the lower oxygen flow is demanded.
ObjectiveTo explore the early predictive value of Wells score and D-dimer for acute pulmonary embolism. MethodsEighty-two cases with acute pulmonary embolism comfirmed by computed tomography pulmonary angiography and (or) lung ventilation/perfusion scan were retrospectively studied from October 2013 to October 2014 in our hospital. Another 82 cases without acute pulmonary embolism in the chest pain center simultaneously were selected as control group. The data on admission were analyzed including Wells score, D-dimer, pH, PCO2, PO2, P(A-a)O2, brain natriuretic peptide, troponin I of two groups of patients. Relevant variables were selected by multivariate logistic regression analysis. The receiver operating characteristic (ROC) curve was made by sensitivity as the ordinate and 1 minus specificity as abscissa. The area under ROC curve (AUC) for relevant variables was calculated and the variable with higher AUC was selected. The best threshold, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were achieved from the ROC curves. ResultsThe multivariate logistic regression analysis showed that Wells score (OR=8.114, 95%CI 1.894-34.761, P=0.005) and D-dimer (OR=1.009, 95%CI 1.001-1.017, P=0.021) could predict APE early. The AUC, sensitivity, specificity, PPV, NPV of Wells score for the early prediction of patients with acute pulmonary embolism were 0.990, 50.0%, 100.0%, 100.0%, 66.7%, respectively. The AUC, sensitivity, specificity, PPV, NPV of D-dimer for the early prediction of patients with acute pulmonary embolism were 0.986, 95.1%, 97.6%, 97.5%, 95.2%, respectively. ConclusionWells score and D-dimer have high predictive value in patients with acute pulmonary embolism, and can be used in preliminary screening of acute pulmonary embolism in the emergency department.
ObjectivesTo evaluate the effects of Pulmonary Embolism Response Team (PERT) on treatment strategies and long-term prognosis in patients with acute pulmonary embolism before and after the implementation of the first PERT in China. Methods The official start of PERT (July 2017) was took as the cut-off point, all APE patients who attended Beijing Anzhen Hospital of Capital Medical University one year before and after this cut-off time were included through the hospital electronic medical record system. The APE patients who received traditional treatment from July 5, 2016 to July 4, 2017 were recruited in the control group (Pre-PERT group), and the APE patients who received PERT mode treatment from July 5, 2017 to July 4, 2018 were recruited as the intervention group (Post-PERT group). Treatment methods during hospitalization were compared between the two groups. The patients were followed up for one year after discharge to evaluate their anticoagulant therapy, follow-up compliance and long-term prognosis. Results A total of 108 cases in the Pre-PERT group and 102 cases in the Post-PERT group were included. There was no significant statistical difference between the two groups in age and gender (both P>0.05). Anticoagulation therapy (87.3% vs. 81.5%, P=0.251), catheter-directed treatment (3.9% vs. 2.8%, P=0.644), inferior vena cava filters (1.0% vs. 1.9%, P=1.000), surgical embolectomy (2.0% vs. 0.9%, P=0.613), systemic thrombolysis (3.9% vs. 4.6%, P=0.582) were performed in both groups with no significant differences between the two groups. The use rate of rivaroxaban in the Post-PERT group was higher than that in the Pre-PERT group at one year of discharge, and the use rate of warfarin was lower than that of the Pre-PERT group (54.5% vs. 32.5%; 43.6% vs. 59.0%, P=0.043). The anticoagulation time of the Post-PERT group was longer than that of the Pre-PERT group (11.9 months vs. 10.3 months, P<0.001). The all-cause mortality within one year, hemorrhagic events and the rate of rehospitalization due to pulmonary embolism were not significantly different between the two groups, (10.4% vs. 8.6%), (14.3% vs. 14.8%), and (1.3% vs. 2.5%, χ2=3.453, P=0.485), respectively. Conclusions APE treatment was still dominated by anticoagulation and conventional treatment at the early stage of PERT implementation, and advanced treatment (catheter-directed treatment and surgical embolectomy) is improved, it showed an expanding trend after only one year of implementation although there was no statistical difference. At follow-up, there is no increase in one-year all-cause mortality and bleeding events with a slight increase in advanced treatment after PERT implementation.
Objective To improve the knowledge of pulmonary artery sarcoma ( PAS) and early diagnosis.Methods The clinical data of 8 patients with PAS confirmed by biopsy from April 2001 to April 2012 in Beijing Anzhen Hospital were retrospectively analyzed. Results There were 5 males and 3 females, with mean age of 46. 75 ±11. 47 years [ range: 32-67 years] . The main clinical manifestations were chest tightness, shortness of breath, intermittent syncope, heart palpitations at exertion, etc. Laboratory examinations showed the patients with PAS have no obvious hypoxemia and most of them have normal D-dimer level. Echocardiography revealed pulmonary hypertension, right ventricular enlargement, and echo of massive lumps in main pulmonary truck. Lower limb veins were normal in color doppler ultrasonography. Chest X-ray revealed prominent pulmonary artery segment, full segment of the right pulmonary artery, an increased hilum and pleural effusion. CT pulmonary angiography showed expansion of pulmonary artery, large filling defect in main pulmonary truck and left or right pulmonary artery, combined with pericardial effusion, pleural effusion. Lung ventilation/perfusion imaging did not match, showing radioactive sparse and defects in multiple lung segments and subsegments, involved 3 to 13 lung segments. Pulmonary angiography showed filling defects in the main pulmonary artery, left or right pulmonary artery. 8 patients were confirmed pathologically after operation. Pathological results showed leiomyosarcoma differentiation in 3 cases, undifferentiated sarcoma in2 cases, and undefined pathological type in 3 cases. All 8 patients were misdiagnosed as pulmonary embolism before surgery. The average days of misdiagnosis were 85. 6 ±21. 5 days. 7 cases were given simple surgical resection, one case underwent surgical resection combined with radiotherapy and chemotherapy. 7 cases were relieved and discharged, and one case died. Conclusion PAS is a rare disease clinically and is easily misdiagnosed as pulmonary embolism. Clinicians should enhance the recognition in order to diagnose early and treat comprehensively.