Objective To summarize the research progress of secondary fracture of adjacent vertebral body after percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP). Methods Recent literature concerning PVP and PKP was extensively reviewed and summarized. Results The main reasons of secondary fracture of adjacent vertebral body after PVP and PKP are the natural process of osteoporosis, the initial fracture type, the bone cement, the surgical approach, the bone mineral density, and other factors. Conclusion Secondary fracture of adjacent vertebral body after PVP and PKP is a challenge for the clinician, a variety of factors need to be suficiently considered and be confirmed by a lot of basic and clinical epidemiological studies.
ObjectiveTo evaluate the effectiveness of percutaneous vertebroplasty (PVP) in the treatment of osteoporotic vertebral compression fractures with or without intravertebral clefts by unilateral approach and the impact of intravertebral clefts on the effectiveness. MethodsThe clinical data of 65 patients who met the inclusion criteria of osteoporotic vertebral compression fracture were retrospectively analyzed. According to having intravertebral clefts or not, the patients were divided into 2 groups: cleft group (group A, n=25) and non-cleft group (group B, n=40). There was no significant difference in gender, age, cause of injury, the level of fracture vertebrae, degree of damage, and interval of injury and operation between 2 groups (P gt; 0.05). All patients were given PVP procedure by unilateral approach. The operation time, the injected volume of bone cement, time to ambulate, complications, and adjacent vertebral re-fracture were recorded. The height of anterior and middle column and the posterior convex Cobb angle of injured spine were measured on the lateral X-ray film in standing position at preoperation and 1, 48 weeks after operation. The visual analogue scale (VAS) score and Oswestry disability index (ODI) system were used to evaluate the pain relief and improvement of daily activity function respectively at preoperation and 1, 4, and 48 weeks after operation. ResultsThere was no significant difference in the operation time and time to ambulate between 2 groups (P gt; 0.05). The injected volume of bone cement in group B was significantly less than that in group A (t=1.833, P=0.034). Asymptomatic cement leakage occurred in 6 patients (4 in group A and 2 in group B), in group A including 1 case of venous leakage, 2 cases of paravertebral leakage, and 1 case of intradiscal leakage; in group B including 2 cases of venous leakage. No symptomatic pulmonary embolism was observed. The vital sign was stable during operation and postoperatively. All patients were followed up 12-30 months (mean, 18.5 months). No re-fracture of the vertebrae occurred during the follow-up. The postoperative VAS score, ODI, the height of anterior and middle column, and the posterior convex Cobb angle of injured spine were improved significantly when compared with the preoperative ones in 2 groups (P lt; 0.05), but no significant difference was found between 2 groups at pre- and post-operation (P gt; 0.05). ConclusionPVP by unilateral approach is safty and efficacy in the treatment of osteoporosis vertebral compression fracture combined with intravertebral clefts. Intravertebral clefts have no significant impact on the effectiveness in the pain relief and function improvement.
Objective To evaluate the efficacy of percutaneous kyphoplasty (PKP) in hyperextension position for the treatment of osteoporotic vertebral compression fracture (OVCF) with vacuum phenomenon. Methods Between April 2004and August 2009, 35 patients who suffered from OVCF with vacuum phenomenon were treated with PKP in hyperextension position, 8 patients were excluded because of lost follow-up. In 27 follow-up cases, there were 9 males and 18 females with an average age of 75 years (range, 58-90 years) and with an average disease duration of 9.8 months (range, 2-17 months). One vertebral body was involved in 26 cases and 2 vertebral bodies were involved in 1 case. According to the imaging examination and Krauss et al. criterion, all patients were diagnosed as having vertebral vacuum phenomenon. Refer to the lateral X-ray views, the height and the kyphotic angle of the involved vertebral body were measured pre- and postoperatively. The surgical outcomes were evaluated by using visual analogue scale (VAS) and Oswestry disabil ity index (ODI) system. Results All operations were performed successfully with no severe compl ication. The mean follow-up of 27 patients was 32 months (range, 24-58 months). The mean cl inical heal ing time of OVCF was 4 months (range, 3-6 months). The VAS score, ODI system, anterior and medial height of involved vertebral body, kyphotic angle of involved vertebral body were improved significantly at 1 week after operation and at last follow-up (P lt; 0.05); there was no significant difference between at 1 week after operation and at last follow-up (P gt; 0.05). There was no significant difference in the posterior height of involved vertebral body among different postoperative time-points (P gt; 0.05). Asymptomatic cement leakage occurred in 3 patients. Adjacent vertebral fracture occurred in 1 patient at 7 months. Intravertebral vacuums showed a compact and sol id cement fill ing pattern. Conclusion PKP in hyperextension position can significantly rel ieve back pain, restore vertebral height, and correct local kyphosis in the treatment of OVCF with vacuum phenomenon.
Objective To analyse the correlative factors of secondary vertebral fracture after percutaneous kyphoplasty (PKP) in treatment of osteoporotic vertebral compression fracture (OVCF) at different levels (adjacent and/or nonadjacent levels). Methods Between December 2002 and May 2008, 84 patients with OVCF were treated with PKP, and the cl inical data were analysed retrospectively. There were 11 males and 73 females with an average age of 70.1 years (range, 55-90 years). All patients were followed up 24-96 months (mean, 38 months). Secondary vertebral fracture occurred in 12 cases at 3-52 months after PKP (secondary fracture group), no secondary fracture in 72 cases (control group) at over 24months. The preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway (uni- or bilateral puncture), age, gender, number of fracture segment, and cement intradiscal leakage were compared between 2 groups to find correlative factors of secondary vertebral fractures. Results There was no significant difference in preoperative bone mineral density, postoperative vertebral height compression rate, postoperative Cobb angle, amount of injected bone cement per vertebra, puncture pathway, age, gender, and number of fracture segment between 2 groups (P gt; 0.05). But the incidence of cement intradiscal leakage was much higher in secondary fracture group than in control group (χ2=5.294, P=0.032). Conclusion Cement intradiscal leakage may be the correlative factor of secondary vertebral fracture after PKP in OVCF.
Objective To evaluate the effectiveness of Confidence high viscosity bone cement system and postural reduction in treating acute severe osteoporotic vertebral compression fracture (OVCF). Methods Between June 2004 and June2009, 34 patients with acute severe OVCF were treated with Confidence high viscosity bone cement system and postural reduction. There were 14 males and 20 females with an average age of 72.6 years (range, 62-88 years). All patients had single thoracolumbar fracture, including 4 cases of T11, 10 of T12, 15 of L1, 4 of L2, and 1 of L3. The bone density measurement showed that T value was less than —2.5. The time from injury to admission was 2-72 hours. All cases were treated with postural reduction preoperatively. The time of reduction in over-extending position was 7-14 days. All patients were injected unilaterally. The injected volume of high viscosity bone cement was 2-6 mL (mean, 3.2 mL). Results Cement leakage was found in 3 cases (8.8%) during operation, including leakage into intervertebral space in 2 cases and into adjacent paravertebral soft tissue in 1 case. No cl inical symptom was observed and no treatment was pearformed. No pulmonary embolism, infection, nerve injury, or other complications occurred in all patients. All patients were followed up 12-38 months (mean, 18.5 months). Postoperatively, complete pain rel ief was achievedin 31 cases and partial pain refief in 3 cases; no re-fracture or loosening at the interface occurred. At 3 days after operation and last follow-up, the anterior and middle vertebral column height, Cobb angle, and visual analogue scale (VAS) score were improved significantly when compared with those before operation (P lt; 0.05);and there was no significant difference between 3 days and last follow-up (P gt; 0.05). Conclusion Confidence high viscosity bone cement system and postural reduction can be employed safely in treating acute severe OVCF, which has many merits of high viscosity, long time for injection, and easy-to-control directionally.
Objective To explore the correlative factors affecting the compl ications resulting from cement leakage after percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral body compression fractures (OVCF). Methods From February 2005 to October 2008, 71 patients with OVCF were treated by PKP and were retrospectively analyzed. There were 16 males and 55 females, and the average age was 71.5 years (range, 52-91 years). The average duration of disease was 5.7 months (range, 1-11 months). A total of 171 vertebra were involved in fracture including 19 cases of single vertebral fractures, 21 cases of double vertebral fractures, 20 cases of three vertebral fractures, and 11 cases of more than three vertebral fractures. All the treated vertebra were divided into acute (86 vertebra) or subacute (85 vertebra) state based on changes in MRI signal intensity. There was no radiculopathy or myelopathy. The average injected cement volumewas 4.6 mL (range, 1.5-6.5 mL). The treatment efficacy was assessed by observing the change in anterior and middle vertebral column height, Cobb angle, visual analogue scale (VAS) and Oswestry functional score at preoperation, 3 days after operation and last follow-up. The patients were divided into cement leakage group and no cement leakage group. All the compl ications were recorded, and then the correlative factors affecting the compl ications were analyzed. Results All the cases had rapid and significant improvement in back pain following PKP. All patients were followed up for 14 months (range, 7-18 months). There was no cement extravasation resulting in radiculopathy or myelopathy. Four patients (5.63%) had lung-related compl ications. During the follow-up, 9 recurrence vertebral fractures were observed in 6 patients (8.45%). The anterior and middle vertebral column height, Cobb angle, VAS and Oswestry score were significantly improved when compared with preoperation (P lt; 0.05). Cement leakage occurred in 17 (9.94%) vertebral bodies; of 17 cases, the cement leaked into the paravertebral space in 7 cases, intervertebral space in 6 cases, channel of needl ing insertion in 3 cases, and spinal canal in 1 case. Univariate analysis showed statistically significant differences (P lt; 0.05) in preoperative anterior and middle vertebral column height, injected cement volume and vertebral body wall incompetence between the cement leakage group and no cement leakage group. There were no significant differences (P gt; 0.05) in preoperative Cobb angle, freshness of vertebral fracture, location of operative vertebrae and operative approach between the two groups. Multiple logistic regression analysis showed that the injected cement volume [odds ratio (OR)=3.105, 95% confidence interval (CI)=1.674-5.759, P lt; 0.01] and vertebral body wall incompetence (OR=11.960, 95%CI=3.512-40.729, P lt; 0.01) were the predominant variable associated with the compl ications resulted fromcement leakage. Conclusion The injected cement volume and vertebral body wall incompetence were the factors affecting the compl ications. The improvement of surgical technique is the capital factor that may reduce the compl ications in the PKP.
Objective To investigate the causes and preventive methods of the bone cement leakage in percutaneous kyphoplasty (PKP) for osteoporotic vertebral body compression fracture (OVCF). Methods From April 2003 to November 2007, 116 patients with OVCF were treated with PKP, including 57 males and 59 females aged 65-92 years old (average 67.7 years old). All the patients suffered from trauma and the course of disease was 1-14 days (average 5.7 days). There were 159compressed and fractured vertebral bodies, including one vertebral body in 83 cases, two vertebral bodies in 24 cases, three vertebral bodies in 8 cases, and four vertebral bodies in 1 case. The diagnosis of OVCF was confirmed by imaging examination before operation. All the patients had intact posterior vertebral walls, without symptoms of spinal and nerve root injury. During operation, 3.5-7.1 mL bone cement (average 4.8 mL) was injected into single vertebral body. Results The operation time was 30-90 minutes (average 48 minutes). Obvious pain rel ief was achieved in all the patients after operation. X-rays examination 2 days after operation revealed that the injured vertebral bodies were well replaced without further compression and deformation, and the bone cement was evenly distributed. Fourteen vertebral bodies had bone cement leakage (4 of anterior leakage, 4 of lateral leakage, 3 of posterior leakage, 2 of intervertebral leakage, 1 of spinal canal leakage). The reason for the bone cement leakage included the individual ity of patient, the standardization of manipulation and the time of injecting bone cement. During the follow-up period of 12-30 months (average 24 months), all the patients got their normal l ife back, without pain, operation-induced spinal canal stenosis, obvious height loss of injured vertebral bodies and other compl ications. Conclusion For OVCF, PKP is a mini-invasive, effective and safe procedure that provides pain rel ief and stabil ization of spinal stabil ity. The occurrence of bone cement leakages can be reduced by choosing the suitable case, improving the viscosity of bone cement, injecting the proper amount of bone cement and precise location during operation.