Objective To investigate the protective effect of recombinant erythropoietin (EPO) on the photoreceptor cells in rat with retinal detachment (RD).Methods One hundred and sixtytwo normal male rats were randomly divided into normal control (NC) group, RD model group, RD+phosphate buffer solution (RD+PBS) group, RD+EPO 100 ng group, RD+EPO 200 ng group and RD+EPO 400 ng group. Three days after RD, activated caspase3 and bclXL were detected by Western blot and/or immunofluorescence, and apoptosis were measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate digoxigenin nick-end labeling(TUNEL). Fourteen and 28 days and two months after RD, the outer nuclear layer (ONL)thickness was measured by histopathologic method.Results Western bolt indicated that the protein level of activated caspase-3 and bcl-XL between six groups were statistically significant(F=35.96, 30.75;P<0.01). The number of TUNEL positive cells and activated caspase-3 positive cells are consistent with each other in different groups. Fourteen days and two months after RD,the differences of ONL thickness between six groups were statistically significant(F=21.52,96.25;P<0.01).Conclusion Supplement of EPO after RD can alleviate apoptosis by inhibiting of the caspase-3 activity and increasing the expression of bcl-XL,thus exerts protective effect on photoreceptor cells.
Stargardt disease (STGD) is an inherited disorder of retinal pigment epithelium. Three genes have been found to be implicated in STGD including Abca4 (adenosine triphosphate-binding cassette, sub-family A, member 4), Elovl4 (elongation of very long chain fatty acids protein 4) and Prom1 (prominin-1). Target genes can be delivered to the retina by various methods such as lentivirus (LV) vectors, adeno-associated virus (AAV) vectors and non-viral nano-particles. The Abca4-/-, Elovl4-/- and Prom1-/- mice model are used to study the pathogenesis mechanism and treatment of STGD. Retinal function improved significantly upon gene therapy in these models. Based on these works using animal model, phase Ⅰ/Ⅱa clinical trial of Abca4-associated STGD gene therapy are underway. AsaLV vector, equine infectious anemia virus (EIAV) is used to carry the Abca4 gene. These studies will evaluate three dose levels of the EIAV vector for safety, tolerability and biological activity. Moreover, some preclinical attempts to deliver Abca4 via AAV have been made usingamodified AAV vectors because of the large size of the ABCA4 cDNA. The good responses in animal models render STGDavery attractive object for human gene therapy after the successful of the phase Ⅰ/Ⅱ clinical trials of Leber′s congenital amaurosis.
ObjectiveTo investigate the neuroprotective effect of Benztropine on retinal ganglion cells (RGCs) death and optic nerve injury in rats model of non-arteritis anterior ischemic optic neuropathy (rNAION).MethodsA total of 25 Sprague-Dawley rats were randomly divided into Benztropine treatment group (n=13) and PBS control group (n=12). The right eye was set as the experimental eye. rNAION model was established by using rose Bengal combined with laser photodynamic method. The rats in the Benztropine treatment group were received intraperitoneal injection with Benztropine 10 mg/kg (0.2 ml) daily for 3 weeks, while the rats in the PBS control group were received intraperitoneal injection with an equal volume of PBS. At 1, 3 and 7 days after modeling, the retinal and optic disc conditions of the rats were observed by direct ophthalmoscopy. Retrograde labeling, fluorescence microscopy and transmission electron microscopy were used to observe the survival of RGCs and the damage of the optic nerve myelin and axon at 4 weeks after modeling. The RGCs density and survival rate of the two groups were compared by One-Way Anova.ResultsAt 1 and 3 days after modeling, the optic disc edema was observed in the rats of rNAION model group. At 7 days after modeling, the optic disc edema decreased and the boundary was blurred compared with 3 days after modeling.After 4 weeks, the RGCs density in the PBS group was 308±194/mm2 and the survival rate was 13.7%. The density of RGCs in the Benztropine group was 1173+868/mm2 and the survival rate was 47.6%. The differences of RGCs density and survival rate were significant between the two groups (F=7.552, 8.184; P=0.015, 0.012). Myelin disintegration, axon degeneration, onion-like body and gliosis were observed in the optic nerve sections of rNIAON in the PBS group, while the damage of axon and myelin structure in the Benztropine group was significantly less than that in the PBS group.ConclusionsBenztropine group showed higher RGC survival rate, less damage of axon and myelin structure on rNAION model. This study explored the potential neuroprotective effect of Benztropine.