ObjectiveTo observe the effect of compound chlorhexidine gargle wash care for patients after radical surgery of tongue cancer. MethodsBetween January 2013 and March 2014, 40 patients with tongue cancer who underwent radical surgery without radiation therapy or chemotherapy before operation were selected and randomly divided into compound chlorhexidine giuconatie gargle solution group (intervention group, n=19) and traditional oral care group (control group, n=21). Then we compared the two groups in terms of bacterial colony number, oral cavity cleanness, incidence rate of bad breath and oral ulcer. ResultsBefore intervention, there was no significant diTherences between the two groups in the number of bacterial colony, oral cavity cleanness or oral odor (P>0.05). After treatment, the bacterial colony number and incidence of oral ulcer in the intervenient group were significantly lower, and oral odor was slighter than that of the control group (P<0.05). Oral cavity cleanness between the two groups was not significantly different (P>0.05). ConclusionCompound chlorhexidine gargle wash care for patients after radical surgery of tongue cancer was better than the traditional treatment in terms of bacterial colony number, incidence rate of bad breath and oral ulcer. It is worth clinical popularizing.
Objective To investigate the physicochemical properties of pure titanium surface grafted with chlorhexidine (CHX) by phenolamine coating, and to evaluate its antibacterial activity and osteoblast-compatibility in vitro. MethodsControl group was obtained by alkali and thermal treatment, and then immersed in the mixture of epigallocatechin-3-gallate/hexamethylene diamine (coating group). Phenolamine coating was deposited on the surface, and then it was immersed in CHX solution to obtain the grafted surface of CHX (grafting group). The surface morphology was observed by scanning electron microscope, the surface element composition was analyzed by X-ray photoelectron spectroscopy, and the surface hydrophilicity was measured by water contact angle test. Live/dead bacterial staining, nephelometery, and inhibition zone method were executed to evaluate the antibacterial property. Cytotoxicity was evaluated by MTT assay and cell fluorescence staining. Bacteria-MC3T3-E1 cells co‐culture was conducted to evaluate the cell viability on the samples under the circumstance with bacteria. Results Scanning electron microscope observation results showed that deposits of coating group and grafting group increased successively and gradually covered the porous structure. X-ray photoelectron spectroscopy results showed the peak of N1s enhanced and the peak of Cl2p appeared in grafting group. Water contact angle test results showed that the hydrophilic angle of three groups increased in turn, and there was significant difference between groups (P<0.05). Live/dead bacteria staining results showed that the grafting group had the least amount of bacteria adhered to the surface and the proportion of dead bacteria was high. The grafting group had a transparent inhibition zone around it and the absorbance (A) value did not increase, showing significant difference when compared with control group and coating group (P<0.05). MTT assay and cell fluorescence staining results showed that the number of adherent cells on the surface of the grafting group was the least, but the adherent cells had good proliferation activity. Bacteria-cell co-culture results showed that there was no bacteria on the surface of grafting group but live cells adhered well. ConclusionCHX-grafted phenolamine coating has the ability to inhibit bacterial adhesion and proliferation, and effectively protect cell adhesion and proliferation in a bacterial environment.