west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "活性氧" 25 results
  • Islet biomimetic microenvironment constructed by chitosan oligosaccharide protects islets from hypoxia-induced damage by reducing intracellular reactive oxygen species

    ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.

    Release date:2022-06-08 10:32 Export PDF Favorites Scan
  • Role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia

    ObjectiveTo investigate the role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia.MethodsThe skull tissue of newborn rats was cut into small pieces, and the osteoblasts were separated and purified by the tissue block adherent method and the differential adherent method. The first generation cells were harvested and identified by HE staining, Alizarin red staining, alkaline phosphatase (ALP) staining, and flow cytometry. A three-gas incubator was used to prepare a hypoxia model of osteoblasts. At 0, 3, 6, 12, and 24 hours of hypoxia, the expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ were detected by Western blot, and the level of reactive oxygen species (ROS) and cell apoptosis rate were detected by flow cytometry. And the time point of the highest level of ROS was selected as the hypoxia time point for subsequent experiments. The first generation osteoblasts were divided into normal group, si-p22phox hypoxia group, and si-NOX5 hypoxia group and subjected to corresponding transfection and hypoxia treatment. The inhibition efficiency of si-p22phox and si-NOX5 were detected by RT-PCR. Then the osteoblasts were divided into normal group, si-NC hypoxia group, si-p22phox hypoxia group, and si-NOX5 hypoxia group. After transfection and hypoxia treatment, Western blot was used to detect the expressions of p22phox, NOX5, autophagy-related proteins (LC3Ⅱ/Ⅰ, Beclin), and apoptosis-related proteins (Bcl-2, Bax), and flow cytometry was used to detect the cell apoptosis rate and level of ROS. The first generation osteoblasts were divided into a hypoxia group for 12 hours (hypoxia group) and a group that simultaneously inhibited si-p22phox and si-NOX5 and hypoxia for 12 hours (inhibition+hypoxia group). The expressions of Beclin and Bax were observed by immunofluorescence staining after the corresponding treatment.ResultsAfter identification, the isolated cells were osteoblasts. After hypoxia treatment, the relative expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ proteins and the apoptosis rate of osteoblasts gradually increased (P<0.05), and the level of ROS also significantly increased (P<0.05) and reached the peak value at 12 hours. The 12-hour hypoxia model was selected for subsequent experiments. Silencing the p22phox gene did not affect the expression of NOX5, and silencing the NOX5 gene did not affect the expression of p22phox. Compared with hypoxia treatment, the relative expressions of LC3Ⅱ/Ⅰ, Beclin, and Bax proteins after inhibiting the expression of p22phox or NOX5 gene significantly decreased (P<0.05), the relative expression of Bcl-2 protein significantly increased (P<0.05), the cell apoptosis rate and level of ROS also significantly decreased (P<0.05). After silencing the expressions of p22phox and NOX5 genes at the same time, the immunofluorescence staining showed that the fluorescence of Beclin and Bax were weak.ConclusionInhibiting the expressions of p22phox and NOX5 genes can reduce the level of ROS in osteoblasts under hypoxia-induced conditions, and at the same time reduce autophagy and apoptosis, especially attenuate the excessive apoptosis of cells in the early to late stages, and strengthen the hypoxic osteoblasts proliferation.

    Release date:2021-07-29 05:02 Export PDF Favorites Scan
  • The Protective Effect of Edaravone on Acute Lung Injury of Rats with Sepsis

    Objective To explore the potential protective effect in vivo of Edaravone, a free radical scavenger on model of acute lung injury in rats with sepsis. Methods Twenty-four male Wistar rats were randomly divided into three groups, ie. a control group( NS group) , a model group( LPS group) , a Edaravone treatment group( ED group) . ALI was induced by injecting LPS intravenously( 10 mg/ kg) in the LPS group and the ED group. Meanwhile the ED group was intravenously injected with Edaravone( 3 mg/ kg) . The NS group was injected with normal saline as control. The lung tissue samples were collected at 6 h after intravenous injection. The wet / dry ( W/D) weight ratio of lung tissue was measured. The levels of myeloperoxidase ( MPO) , malondialdehyde ( MDA ) and superoxide dismutase ( SOD) in lung tissue homogenate were assayed. The pathological changes and expression of nuclear factor-kappa B( NF-κB) in lung tissue were also studied. Results Compared with the NS group, The W/D, pathological scores, NF-κB expression, MPO and MDA levels in the LPS group were significantly higher( all P lt; 0. 01) , and the level of SOD was apparently lower( P lt; 0. 01) . The W/D, pathological scores, NF-κB expression, MPO and MDA levels in the ED group were significantly lower than those in the LPS group( all P lt; 0. 01) and higher than those in the NS group( all P lt; 0. 01) . And the level of SOD in lung tissue of the ED group was higher than that in the LPS group and lower than that in the NS group ( P lt; 0. 01) . Conclusions Edaravone has protective effect on ALI rat model. The mechanismmay be related to its ability of clearing the reactive oxygen species, inhibiting the activation of the signal pathway of NF-κB and inflammatory cascade.

    Release date:2016-09-14 11:23 Export PDF Favorites Scan
  • The role of glutathione in steroid induced bone marrow mesenchymal stem cells dysfunction

    Objective To investigate the protective effect of the antioxidant glutathione (GSH) on the steroid-induced imbalance between osteogenesis and adipogenesis in human bone marrow mesenchymal stem cells (BMSCs). Methods The BMSCs were isolated from the proximal femur bone marrow from 3 patients of femoral neck fracture and were separated, cultured, and purificated by density gradient centrifugation and adherent wall methodin vitro. The third generation BMSCs were divided into 5 groups: group A, BMSCs (1×105 cells/mL); group B, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone; group C, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+5 μmol/L GSH; group D, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+10 μmol/L GSH; group E, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+50 μmol/L GSH. After cultured for 7 days, the reactive oxygen species expression was detected by flow cytometry; the superoxide dismutase (SOD) and Catalase mRNA expressions were determined by RT-PCR; the peroxisome proliferator-activated receptors γ (PPAR-γ), CCAAT/enhancer-binding family of proteins (C/EBP), Runx2, and alkaline phosphatase (ALP) mRNA expressions were evaluated by real-time fluorescence quantitative PCR. After cultured for 21 days, Oil red O staining was used to observe the adipogenesis differentiation of cells, and the expressions of related proteins were detected by Western blot. Results The reactive oxygen species expression in group B was obviously higher than in the other groups, in group C than in groups A, D, and E, and in groups D, E than in group A, all showing significant differences between groups (P<0.05); but there was no significant difference between groups D and E (P>0.05). The oil red O staining positive cells in group B were obviously more than the other groups, and groups C, D, E, and A decreased sequentially, the absorbance (A) values had significant differences between groups (P<0.05). RT-PCR detection showed that the relative expressions of SOD and Catalase mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E (P<0.05), but there was no significant difference among groups A, D, and E (P>0.05). Real-time fluorescence quantitative PCR detection showed that the relative expressions of PPAR-γ and C/EBP mRNA in group B were significantly higher than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A (P<0.05); but there was no significant difference between groups D and E (P>0.05). The relative expressions of Runx2 and ALP mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A (P<0.05); but there was no significant difference between groups D and E (P>0.05). Western blot detection showed that the relative expression of PPAR-γ and C/EBP protein in group B was significantly higher than those in the other groups, and groups C, D, E, and A decreased sequentially, all showing significant differences between groups (P<0.05). The relative expression of Runx2 and ALP protein in group B was significantly lower than those in the other groups, and groups C, D, E, and A increased sequentially, all showing significant differences between groups (P<0.05). Conclusions GSH can inhibit the adipogenesis differentiation and enhance the osteogenic differentiation of human BMSCs by reducing the intracellular reactive oxygen species level; and in a certain range, the higher the concentration of GSH, the more obvious the effect is.

    Release date:2018-01-09 11:23 Export PDF Favorites Scan
  • Molecular mechanism of metastasis-associated protein 3 involvement in glioma drug resistance through reactive oxygen

    ObjectiveTo investigate the molecular mechanism by which metastasis-associated protein 3 (MTA3) participates in glioma resistance through reactive oxygen species. Methods Protein expression in glioma stem cells (GSCs) and non-GSCs was detected using Western blotting. GSCs included U87 and SHG44 cells, while non-GSCs included U87s and SU-2 cells. After overexpressing MTA3, U87 and SHG44 cells were divided into Lv-scr and Lv-MTA3 groups. The self-renewal capacity of glioma cells was assessed through a neurosphere formation assay. Cell survival fractions were examined following exposure to 0, 2, 4, 6, 8, and 10 Gy X-ray irradiation under normoxic or hypoxic conditions. Apoptosis and reactive oxygen species expression were analyzed using flow cytometry. Immunofluorescence staining was performed to detect the stem cell markers CD133 and nestin, as well as the differentiation markers glial fibrillary acidic protein (GFAP, for astrocytes) and neuronal class Ⅲ β-tubulin. Results In GSCs, MTA3 expression was lower in the U87s and SU-2 groups. After MTA3 overexpression, Lv-MTA3 expression was higher in U87s and SU-2 compared to the Lv-scr group. Under normoxic or hypoxic conditions, U87 and SU-2 showed greater radioresistance compared to glioma cell lines U87 and SHG44. Compared to non-GSCs, basal reactive oxygen species formation was reduced in GSCs, while reactive oxygen species generation was increased in non-GSCs. Following exposure to different doses of X-rays under normoxic or hypoxic conditions, GSCs with MTA3 overexpression exhibited greater radiosensitivity than those with stable integration. Additionally, MTA3 overexpression slightly increased the oxygen enhancement ratio (OER) in GSCs. MTA3 overexpression reduced the immunoreactivity of CD133 and nestin in both stem cell lines, and increased immunofluorescence staining of GFAP and neuronal class Ⅲ β-tubulin, with statistically significant differences (P<0.05). Conclusions MTA3 is downregulated in GSCs. Overexpression of MTA3 reduces the radioresistance and stemness of GSCs both in vitro and in vivo. MTA3 plays a crucial role in regulating the radiosensitivity and stemness of GSCs through reactive oxygen species.

    Release date:2024-06-24 02:56 Export PDF Favorites Scan
  • Interleukin-8 antagonist down regulates the adhesion and migration of retinal vascular endothelial cells by inhibiting the production of reactive oxygen species

    ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.

    Release date:2023-11-16 05:57 Export PDF Favorites Scan
  • 活性氧簇对创口愈合过程中血管新生的影响

    活性氧族是一类氧衍生的代谢物,被广泛地认为是多种生理过程以及病理状态下关键的调节剂,在血管系统中主要由还原型辅酶Ⅱ氧化酶生成。慢性创口的愈合涉及2种不同形式的血管新生:血管发生(骨髓来源分化而成的循环内皮祖细胞形成)和血管生成(已存在血管局部内皮细胞的芽生而形成)。活性氧族通过对血管新生过程中所涉及的内皮祖细胞、内皮细胞和血管平滑肌细胞功能的调节,影响创口愈合。

    Release date: Export PDF Favorites Scan
  • Research progress of ferroptosis involved in the pathogenesis of diabetic retinopathy

    Diabetic retinopathy (DR) constitutes a major retinal vascular disorder leading to blindness in adults. Current therapeutic approaches for DR exhibit certain degrees of efficacy but are constrained by a spectrum of limitations. Hence, there is a pressing need to deeply investigate the underlying pathogenesis of DR and explore novel therapeutic targets. Ferroptosis, a distinctive form of programmed cell death, has emerged as a pertinent phenomenon in recent years. Notably, ferroptosis has been implicated in the progression of DR through mechanisms involving the induction of retinal oxidative stress, provocation of anomalous retinal vascular alterations, exacerbation of retinal neural damage, and elicitation of immune dysregulation. Thus, elucidating the mechanistic role of ferroptosis in DR holds the potential to establish a robust foundational rationale. This could potentially facilitate the clinical translation of ferroptosis inhibitors as promising agents for the prevention and treatment of DR, thereby forging novel avenues in the landscape of DR management.

    Release date:2023-10-19 10:21 Export PDF Favorites Scan
  • Progress on the role of nuclear factor-erythroid 2-related factor 2 in regulating cell proliferation

    Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important factor for cells to resist oxidative stress and electrophilic attack. It is involved in the formation and control of oxidative stress defense pathways. It is associated with oxidative stress-related diseases, including cancer, neurodegenerative diseases, cardiovascular diseases and aging, and is a potential pharmacological target for the treatment of chronic diseases. This article will review the important role of Nrf2 in the regulation of cell proliferation, including direct regulation of cell proliferation, regulation of reactive oxygen species, intracellular metabolism, regulation of mitochondrial function, cell lifespan and inflammatory response. The aim is to provide a theoretical basis for further research on how to use Nrf2 to regulate cell proliferation.

    Release date:2020-02-03 02:30 Export PDF Favorites Scan
  • Effect of high expression of polypyrimidine tract-binding protein-associated splicing factor on retinal microvascular endothelial cells

    Objective To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism. MethodsThe HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. ResultsThe number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups (t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups (t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences (t=17.342, 16.813, 18.794; P<0.001). ConclusionPSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.

    Release date:2023-05-18 10:05 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content