The electroencephalogram (EEG) signal is a general reflection of the neurophysiological activity of the brain, which has the advantages of being safe, efficient, real-time and dynamic. With the development and advancement of machine learning research, automatic diagnosis of Alzheimer’s diseases based on deep learning is becoming a research hotspot. Started from feedforward neural networks, this paper compared and analysed the structural properties of neural network models such as recurrent neural networks, convolutional neural networks and deep belief networks and their performance in the diagnosis of Alzheimer’s disease. It also discussed the possible challenges and research trends of this research in the future, expecting to provide a valuable reference for the clinical application of neural networks in the EEG diagnosis of Alzheimer’s disease.
Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
Heart failure is a disease that seriously threatens human health and has become a global public health problem. Diagnostic and prognostic analysis of heart failure based on medical imaging and clinical data can reveal the progression of heart failure and reduce the risk of death of patients, which has important research value. The traditional analysis methods based on statistics and machine learning have some problems, such as insufficient model capability, poor accuracy due to prior dependence, and poor model adaptability. In recent years, with the development of artificial intelligence technology, deep learning has been gradually applied to clinical data analysis in the field of heart failure, showing a new perspective. This paper reviews the main progress, application methods and major achievements of deep learning in heart failure diagnosis, heart failure mortality and heart failure readmission, summarizes the existing problems and presents the prospects of related research to promote the clinical application of deep learning in heart failure clinical research.
ObjectiveTo study a deep learning-based dual-modality fundus camera which was used to study retinal blood oxygen saturation and vascular morphology changes in eyes with branch retinal vein occlusion (BRVO). MethodsA prospective study. From May to October 2020, 31 patients (31 eyes) of BRVO (BRVO group) and 20 healthy volunteers (20 eyes) with matched gender and age (control group) were included in the study. Among 31 patients (31 eyes) in BRVO group, 20 patients (20 eyes) received one intravitreal injection of anti-vascular endothelial growth factor drugs before, and 11 patients (11 eyes) did not receive any treatment. They were divided into treatment group and untreated group accordingly. Retinal images were collected with a dual-modality fundus camera; arterial and vein segments were segmented in the macular region of interest (MROI) using deep learning; the optical density ratio was used to calculate retinal blood oxygen saturation (SO2) on the affected and non-involved sides of the eyes in the control group and patients in the BRVO group, and calculated the diameter, curvature, fractal dimension and density of arteriovenous in MROI. Quantitative data were compared between groups using one-way analysis of variance. ResultsThere was a statistically significant difference in arterial SO2 (SO2-A) in the MROI between the affected eyes, the fellow eyes in the BRVO group and the control group (F=4.925, P<0.001), but there was no difference in the venous SO2 (SO2-V) (F=0.607, P=0.178). Compared with the control group, the SO2-A in the MROI of the affected side and the non-involved side of the untreated group was increased, and the difference was statistically significant (F=4.925, P=0.012); there was no significant difference in SO2-V (F=0.607, P=0.550). There was no significant difference in SO2-A and SO2-V in the MROI between the affected side, the non-involved side in the treatment group and the control group (F=0.159, 1.701; P=0.854, 0.197). There was no significant difference in SO2-A and SO2-V in MROI between the affected side of the treatment group, the untreated group and the control group (F=2.553, 0.265; P=0.088, 0.546). The ophthalmic artery diameter, arterial curvature, arterial fractal dimension, vein fractal dimension, arterial density, and vein density were compared in the untreated group, the treatment group, and the control group, and the differences were statistically significant (F=3.527, 3.322, 7.251, 26.128, 4.782, 5.612; P=0.047, 0.044, 0.002, <0.001, 0.013, 0.006); there was no significant difference in vein diameter and vein curvature (F=2.132, 1.199; P=0.143, 0.321). ConclusionArterial SO2 in BRVO patients is higher than that in healthy eyes, it decreases after anti-anti-vascular endothelial growth factor drugs treatment, SO2-V is unchanged.
ObjectiveTo systematically evaluate the efficacy and safety of computer-aided detection (CADe) and conventional colonoscopy in identifying colorectal adenomas and polyps. MethodsThe PubMed, Embase, Cochrane Library, Web of Science, WanFang Data, VIP, and CNKI databases were electronically searched to collect randomized controlled trials (RCTs) comparing the effectiveness and safety of CADe assisted colonoscopy and conventional colonoscopy in detecting colorectal tumors from 2014 to April 2023. Two reviewers independently screened the literature, extracted data, and evaluated the risk of bias of the included literature. Meta-analysis was performed by RevMan 5.3 software. ResultsA total of 9 RCTs were included, with a total of 6 393 patients. Compared with conventional colonoscopy, the CADe system significantly improved the adenoma detection rate (ADR) (RR=1.22, 95%CI 1.10 to 1.35, P<0.01) and polyp detection rate (PDR) (RR=1.19, 95%CI 1.04 to 1.36, P=0.01). It also reduced the missed diagnosis rate (AMR) of adenomas (RR=0.48, 95%CI 0.34 to 0.67, P<0.01) and the missed diagnosis rate (PMR) of polyps (RR=0.39, 95%CI 0.25 to 0.59, P<0.01). The PDR of proximal polyps significantly increased, while the PDR of ≤5 mm polyps slightly increased, but the PDR of >10mm and pedunculated polyps significantly decreased. The AMR of the cecum, transverse colon, descending colon, and sigmoid colon was significantly reduced. There was no statistically significant difference in the withdrawal time between the two groups. Conclusion The CADe system can increase the detection rate of adenomas and polyps, and reduce the missed diagnosis rate. The detection rate of polyps is related to their location, size, and shape, while the missed diagnosis rate of adenomas is related to their location.
Compared with the previous automatic segmentation neural network for the target area which considered the target area as an independent area, a stacked neural network which uses the position and shape information of the organs around the target area to regulate the shape and position of the target area through the superposition of multiple networks and fusion of spatial position information to improve the segmentation accuracy on medical images was proposed in this paper. Taking the Graves’ ophthalmopathy disease as an example, the left and right radiotherapy target areas were segmented by the stacked neural network based on the fully convolutional neural network. The volume Dice similarity coefficient (DSC) and bidirectional Hausdorff distance (HD) were calculated based on the target area manually drawn by the doctor. Compared with the full convolutional neural network, the stacked neural network segmentation results can increase the volume DSC on the left and right sides by 1.7% and 3.4% respectively, while the two-way HD on the left and right sides decrease by 0.6. The results show that the stacked neural network improves the degree of coincidence between the automatic segmentation result and the doctor's delineation of the target area, while reducing the segmentation error of small areas. The stacked neural network can effectively improve the accuracy of the automatic delineation of the radiotherapy target area of Graves' ophthalmopathy.
With the development of artificial intelligence (AI) technology, great progress has been made in the application of AI in the medical field. While foreign journals have published a large number of papers on the application of AI in epilepsy, there is a dearth of studies within domestic journals. In order to understand the global research progress and development trend of AI applications in epilepsy, a total of 895 papers on AI applications in epilepsy included in the Web of Science Core Collection and published before December 31, 2022 were selected as the research objects. The annual number of papers and their cited times, the most published authors, institutions and countries, and their cooperative relationships were analyzed, and the research hotspots and future trends in this field were explored by using bibliometrics and other methods. The results showed that before 2016, the annual number of papers on the application of AI in epilepsy increased slowly, and after 2017, the number of publications increased rapidly. The United States had the largest number of papers (n=273), followed by China (n=195). The institution with the largest number of papers was the University of London (n=36), and Capital Medical University in China had 23 papers. The author with the most published papers was Gregory Worrell (n=14), and the scholar with the most published articles in China was Guo Jiayan from Xiamen University (n=7). The application of machine learning in the diagnosis and treatment of epilepsy is an early research focus in this field, while the seizure prediction model based on EEG feature extraction, deep learning especially convolutional neural network application in epilepsy diagnosis, and cloud computing application in epilepsy healthcare, are the current research priorities in this field. AI-based EEG feature extraction, the application of deep learning in the diagnosis and treatment of epilepsy, and the Internet of things to solve epilepsy health-related problems are the research aims of this field in the future.
With the advancement and development of computer technology, the medical decision-making system based on artificial intelligence (AI) has been widely applied in clinical practice. In the perioperative period of cardiovascular surgery, AI can be applied to preoperative diagnosis, intraoperative, and postoperative risk management. This article introduces the application and development of AI during the perioperative period of cardiovascular surgery, including preoperative auxiliary diagnosis, intraoperative risk management, postoperative management, and full process auxiliary decision-making management. At the same time, it explores the challenges and limitations of the application of AI and looks forward to the future development direction.
In recent years, epileptic seizure detection based on electroencephalogram (EEG) has attracted the widespread attention of the academic. However, it is difficult to collect data from epileptic seizure, and it is easy to cause over fitting phenomenon under the condition of few training data. In order to solve this problem, this paper took the CHB-MIT epilepsy EEG dataset from Boston Children's Hospital as the research object, and applied wavelet transform for data augmentation by setting different wavelet transform scale factors. In addition, by combining deep learning, ensemble learning, transfer learning and other methods, an epilepsy detection method with high accuracy for specific epilepsy patients was proposed under the condition of insufficient learning samples. In test, the wavelet transform scale factors 2, 4 and 8 were set for experimental comparison and verification. When the wavelet scale factor was 8, the average accuracy, average sensitivity and average specificity was 95.47%, 93.89% and 96.48%, respectively. Through comparative experiments with recent relevant literatures, the advantages of the proposed method were verified. Our results might provide reference for the clinical application of epilepsy detection.