目的 观察后路环形减压治疗胸腰椎爆裂骨折术后2~5年的临床疗效及并发症发生情况。 方法 回顾性分析2007年1月-2011年3月23例胸腰椎椎体爆裂骨折患者资料,23例患者存在骨折压迫硬膜合并神经症状,均予后路环形减压。术后定期随访,采用日本骨科协会评估治疗分数、美国脊髓损伤协会脊髓损伤分级评定临床疗效及神经功能改善情况,通过影像学资料观察脊柱Cobb角变化情况。 结果 23例患者手术顺利,经过2~5年的随访,出现术后脑脊液漏3例,尿路感染5例,经对症处理后好转。 结论 经椎弓根内侧行椎体后壁切除,可良好减压,避免神经挤压继发加重损伤,有利于神经功能恢复。
Objective To investigate the effect of the sequence of intermediate instrumentation with long screws and distraction-reduction on mild to moderate thoracolumbar fractures treated by posterior open and short-segmental fixation. MethodsThe clinical data of 68 patients with mild to moderate thoracolumbar burst fractures who met the selection criteria between January 2016 and June 2019 were retrospectively analyzed. The patients were divided into group ISDRF (intermediate screws then distraction-reduction fixation, 32 cases) and group DRISF (distraction-reduction then intermediate screws fixation, 36 cases) according to the different operation methods. There was no significant difference between the two groups in age, gender, body mass index, fracture segment, cause of injury, and preoperative load-sharing classification score, thoracolumbar injury classification and severity score, vertebral canal occupational rate, back pain visual analogue scale (VAS) score, anterior height of fractured vertebra, and Cobb angle (P>0.05). The operation time, intraoperative blood loss, complications, and fracture healing time were recorded and compared between the two groups. The vertebral canal occupational rate, anterior height of fractured vertebra, kyphosis Cobb angle, and back pain VAS score before and after operation were used to evaluate the effectiveness. Results There was no significant difference in intraoperative blood loss and operation time between the two groups (P>0.05). No vascular or spinal nerve injury and deep infections or skin infections occurred in both groups. At 1 week after operation, the vertebral canal occupational rate in the two groups was significantly improved when compared with that before operation (P<0.05), no significant difference was found in the difference of vertebral canal occupational rate before and after operation and improvement between the two groups (P>0.05). The patients in both groups were followed up 18-24 months, with an average of 22.3 months. All vertebral fractures reached bone union at 6 months postoperatively. At last follow-up, there was no internal fixation failures such as broken screws, broken rods or loose screws, but there were 2 cases of mild back pain in the ISDRF group. The intra-group comparison showed that the back pain VAS score, the anterior height of fractured vertebra, and the Cobb angle of the two groups were significantly improved at each time point postoperatively (P<0.05); the VAS scores at 12 months postoperatively and last follow-up were also improved when compared with that at 1 week postoperatively (P<0.05). At last follow-up, the anterior height of fractured vertebra in the ISDRF group was significantly lost when compared with that at 1 week and 12 months postoperatively (P<0.05), the Cobb angle had a significant loss when compared with that at 1 week postoperatively (P<0.05); the anterior height of fractured vertebra and Cobb angle in DRISF group were not significantly lost when compared with that at 1 week and 12 months postoperatively (P>0.05). The comparison between groups showed that there was no significant difference in the remission rate of VAS score between the two groups at 1 week postoperatively (P>0.05), the recovery value of the anterior height of fractured vertebra in ISDRF group was significantly higher than that in DRISF group (P<0.05), the loss rate at last follow-up was also significantly higher (P<0.05); the correction rate of Cobb angle in ISDRF group was significantly higher than that in DRISF group at 1 week postoperatively (P<0.05), but there was no significant difference in the loss rate of Cobb angle between the two groups at last follow-up (P>0.05). ConclusionIn the treatment of mild to moderate thoracolumbar burst fractures with posterior short-segment fixation, the instrumentation of long screws in the injured vertebrae does not affect the reduction of the fracture fragments in the spinal canal. DRISF can better maintain the restored anterior height of the fractured vertebra and reduce the loss of kyphosis Cobb angle during the follow-up, indicating a better long-term effectiveness.
Objective To assess the effectiveness of percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture. Methods Between May 2014 and February 2016, 43 cases of type A3 thoracolumbar burst fracture with or without nerve symptoms were treated with pedicle screw fixation and neural decompression. Of them, 21 patients underwent percutaneous pedicle screw fixation and minimally invasive decompression in the same incision (percutaneous group), and the other 22 patients underwent traditional open surgery (open group). There was no significant difference in gender, age, cause of injury, fractures level, preoperative American Spinal Injury Association (ASIA) grade, thoracolumbar injury classification and severity (TLICS) score, load-sharing classification, height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment between 2 groups (P>0.05). The length of soft tissue dissection, operation time, intraoperative blood loss, postoperative drainage, X-ray exposure times, and incision visual analogue scale (VAS) score at 1 day after operation were recorded and compared. At last follow-up, Japanese Orthopaedic Association (JOA) score and low back pain VAS score were recorded and compared respectively. The ASIA grade recovery was evaluated; the height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment were assessed postoperatively. Results Percutaneous group was significantly better than open group in the length of soft tissue dissection, intraoperative blood loss, postoperative drainage, and incision VAS at 1 day after operation (P<0.05), but no significant difference was found in operation time between 2 groups (P>0.05); however, X-ray exposure times of open group were significantly better than that of percutaneous group (P<0.01). The patients were followed up 12 to 19 months (mean, 15.1 months) in 2 groups. All patients achieved effective decompression. No complications of iatrogenic neurological injury and internal fixation failure occurred. The height of injury vertebrae, kyphotic Cobb angle, and spinal canal encroachment of the fractured vertebral body were significantly improved at 3 days after operation when compared with preoperative ones (P<0.05), but no significant difference was found between 2 groups (P>0.05). At last follow-up, JOA score and low back pain VAS score of percutaneous group were significantly better than those of open group (P<0.05). The neurological function under grade E was improved at least one ASIA grade in 2 groups, but no significant difference was shown between 2 groups (Z=0.480, P=0.961). Conclusion Percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture has satisfactory effectiveness. And it has the advantages of minimal trauma, quick recovery, safeness, and reliableness.
ObjectiveTo compare the effectiveness of short segmental pedicle screw fixation with and without fusion in the treatment of thoracolumbar burst fracture. MethodsA retrospective analysis was made on the clinical data of 57 patients with single segment thoracolumbar burst fractures, who accorded with the inclusion criteria between February 2012 and February 2014. The patients underwent posterior short segmental pedicle screw fixation with fusion in 27 cases (fusion group) and without fusion in 30 cases (non-fusion group). There was no significant difference in gender, age, cause of injury, time between injury and admission, fracture segment and classification, and neurologic function America Spinal Injury Association (ASIA) classification between 2 groups, which had the comparability (P > 0.05). The operative time, blood loss, and hospitalization days were compared between 2 groups. The height of the injured vertebra, the kyphotic angle, and the range of motion (ROM) were measured on the X-ray film. The functional outcomes were evaluated by using the Greenough low-back outcome score and the visual analogue scale (VAS) for back pain. The neurologic functional recovery was assessed by ASIA grade. ResultsThe operative time was significantly shortened and the blood loss was significantly reduced in the non-fusion group when compared with the fusion group (P < 0.05), but no significant difference was found in hospitalization days between 2 groups (P > 0.05). The patients were followed up for 2.0-3.5 years (mean, 3.17 years) in the fusion group and for 2-4 years (mean, 3.23 years) in the non-fusion group. X-ray films showed that 2 cases failed bone graft fusion, the fusion time was 12-17 weeks (mean, 15.6 weeks) in the other 25 cases. Complication occurred in 2 cases of the fusion group (1 case of incision deep infection and 1 case of hematoma at iliac bone donor site) and in 1 case of the non-fusion group (fat liquefaction); primary healing of incision was obtained in the others. The Cobb angle, the height of injured vertebrae showed no significant difference between 2 groups at pre-operation, immediate after operation, and last follow-up (P > 0.05). The ROM of injured vertebrae showed no significant difference between 2 groups at 1 year after operation (before implants were removed) (P > 0.05). The implants were removed at 1 year after operation in all cases of the non-fusion group, and in 11 cases of the fusion group. At last follow-up, the ROM of injured vertebrae in the non-fusion group was significantly higher than that in the fusion group (P < 0.05), but no significant difference was found in Greenough low-back outcome score, VAS score, and ASIA grade between 2 groups (P > 0.05). ConclusionFusion is not necessary when thoracolumbar burst fracture is treated by posterior short segmental pedicle screw fixation, which can preserve regional segmental motion, shorten the operative time, decrease blood loss, and eliminate bone graft donor site complications.
Objective To investigate the surgical method and prel iminary cl inical result of managing the patient with lumbar burst fracture but not suitable for single-level fixation and fusion surgery with the reservation of the fractured vertebral body and the anterior decompression. Methods From September 2007 to December 2008, 11 patients with lumbar burst fracture underwent the removal of the posterior superior corner of the injured vertebral body, the removal of the inferior intervertebral disc adjacent to the injured vertebral body, bone graft fusion, and internal fixation. There were 8 males and3 females aged 21-48 years old (average 29.4 years old). All the fractures caused by fall ing from high places. Imaging exams confirmed all the fractures were Denis type B burst fracture. The fracture level was at the L1 in 4 cases, the L2 in 4 cases, the L3 in 2 cases, and the L4 in 1 case. Before operation, the nerve function was graded as grade B in 4 cases, grade C in 3 cases, and grade D in 4 cases according to Frankel scales; the visual analogue scale (VAS) was (7.30 ± 0.98) points; lateral X-ray films displayed the kyphosis Cobb angel was (24.94 ± 12.21)°; the adjacent superior and inferior intervertebral disc height was (12.78 ± 1.52) mm and (11.68 ± 1.04) mm, respectively; CT scan showed the vertebral canal sagittal diameter was (9.56 ± 2.27) mm; CT three-dimensional reconstruction revealed that the intact part of the injured vertebra was less than 50% vertebra body height and the fracture l ine crossed the pedicle. The time from injury to operation was 3-11 days (average 4.8 days). The neurological and radiological evaluations were carried out immediately and 3 months after operation, respectively, and compared with the condition before operation. Results All the patients successfully underwent the surgery. The wound all healed by first intention. All the patients were followed up for 6-18 months (average 14 months). All the patients had a certain degree of nerve function recovery. The Frankel scales in all the patients were increased by 1-2 grade immediately and 3 months after operation. The VAS score was (2.80 ± 1.49) points immediately after operation and (1.54 ± 0.48) points 3 months after operation, suggesting there were significant differences among three time points (P lt; 0.05). The vertebral canal sagittal diameter was significantly enlarged to (18.98 ± 4.82) mm immediately after operation and was (19.07 ± 4.37) mm 3 months after operation. The Cobb angle was (7.78 ± 4.52)° immediately after operation and (8.23 ± 3.57)° 3 months after operation. There were significant differences between before and after operation (P lt; 0.05). For the adjacent superior and inferior intervertebral disc height, there was no significant difference when the value immediately or 3 months after operation was compared with that of before operation (P gt; 0.05). X-ray films and CT scan 3 months after operation showed good internal fixation without theoccurrence of loosing and displacement. Conclusion For the treatment of lumbar burst fracture, the method of reserving the injured vertebral body and anterior decompression can decompress the vertebral canal and shorten the duration for bony fusion.
Objective To evaluate the effectiveness of spinal canal decompression assisted by unilateral biportal endoscopy (UBE) and percutaneous uniplanar pedicle screw internal fixation in the treatment of lumbar burst fractures with neurological symptoms. Methods Between June 2021 and December 2022, 10 patients with single level lumbar burst fracture with neurological symptoms were treated with spinal canal decompression assisted by UBE and percutaneous uniplanar pedicle screw internal fixation. There were 7 males and 3 females with an average age of 43.1 years (range, 21-57 years). The injured vertebrae located at L1 in 2 cases, L2 in 4 cases, L3 in 3 cases, and L4 in 1 case. There were 7 cases of AO type A3 fractures and 3 cases of AO type A4 fractures. The total operation time, the time of operation under endoscopy, and complications were recorded. Pre- and post-operative visual analogue scale (VAS) score and American Spinal Injury Association (ASIA) scale (grading A-E corresponding to assigning 1-5 points for statistical analysis) were used to evaluate effectiveness. X-ray film and CT were performed to observe the fracture healing, and the ratio of anterior vertebral body height, Cobb angle, and rate of spinal canal invasion were measured to evaluate the reduction of fracture.Results All operations was successfully completed, and the spinal canal decompression and the bone fragment in spinal canal reduction completed under the endoscopy. Total operation time was 119 minutes on average (range, 95-150 minutes), and the time of operation under endoscopy was 46 minutes on average (range, 35-55 minutes). There was no complication such as dural sac, nerve root, or blood vessel injury during operation. All incisions healed by first intention. All patients were followed up 18.7 months on average (range, 10-28 months). The VAS score after operation significantly decreased when compared with that before operation (P<0.05), and further improved at last follow-up (P<0.05). The ASIA scale after operation significantly improved when compared with that before operation (P<0.05), and there was no significant difference (P>0.05) in the ASIA scale between at 1 week after operation and at last follow-up. The imaging examination showed that the screw position was good and the articular process joint was preserved. During follow-up, there was no loosening, fracture, or fixation failure of the internal fixation. The ratio of anterior vertebral body height and Cobb angle significantly improved, the rate of spinal canal invasion significantly decreased after operation (P<0.05), and without significant loss of correction during the follow-up (P>0.05). Conclusion Spinal canal decompression assisted by UBE and percutaneous uniplanar pedicle screw fixation is a feasible minimally invasive treatment for lumbar burst fractures with neurological symptoms, which can effectively restore the vertebral body sequence, as well as relieve the compression of spinal canal, and improve the neurological function.
Objective To explore the injury mechanism of the severethoracolumbar burst fracture and the necessity of anterior decompression and reconstruction with internal fixation. Methods From January 1999 to January 2004, 21 patients were treated with anterior decompression and reconstruction. The fractures were located at T12 in 6 patients, L1 in12, L2 in 4, L3 in 3,and L4 in 1. Four patients were treated with the “anterior approach” and “posterior approach” surgeries for severe column fractures.Results All the patients were restored to the normal physiological radian, and the spinal canal was decompressed completely. They werefollowed up for 1-6 years, and the bony fusion was observed radiologically.The spinal cord function was improved to the 1-3 Frankel grade in all the patients except 2. There were no such complications as leakage of the cerebrospinal fluid, platescrew loosening or breaking, or segment instability. The clinical effects were satisfactory. Conclusion The operation of the anterior decompression and reconstruction with internal fixation for severe thoracolumbar burst fracture has advantages of complete decompression, full bonegrafting, and firm internal fixation. It canrestore the spinal height and improve the spinal cord function.
Objective To explore an improved surgical approach to the superior posterior partial resection of the fractured vertebral body followed by the single segmental fusion to treat lumbar burst fracture and to evaluate its preliminary clinical application. Methods From June to October 2006, 4 patients (2 males, 2 females; age, 17-39 years) with Denis B type lumbar burst fracture underwent the superior posterior partial resection of the fractured vertebral body followed by the single segmental fusion. The fracture occurred in 2 patients at L1 and 2 at L2. According to the Frankel scales assessment, before operation, 2patients were at Grade B and the other 2 at Grade C, and the visual analogue scale (VAS) was 7.00±0.82. Radiological evaluation was performed, which revealed the kyphosis Cobb angel of 22.94±11.21°, the adjacent superior and the inferiorintervertebal disc heights of 12.78±1.52 mm and 11.68±1.04 mm, espectively, and the vertebral canal sagittal diameter of 9.56±2.27 mm on the computer tomography (CT) scan. The neurological and the radiological evaluations were also made immediately and 3 months after operation. Results The anterior single segmental decompression and fusion operations were performed successfully in all the patients. The average operating time was 166±29 min and the average amount of blood loss was 395± 54 ml. The Frankel scales assessment showed that at the time immediately after operation, one of the 2 Grade B patients had an improvement to Grade C, but the other patient had no improvement. One of the 2 Grade C patientshad an improvement to Grade D, but the other patient had no improvement. Three months after operation, the 2 Grade B patients had an improvement to Grade C. The 2 grade C patients had an improvement to Grade D or E. The VAS score was significantly decreased to 3.50±1.29 after operation and to 1.25±0.50 3 months later (P<0.05). The vertebral canal sagittal diameter was significantly increased to 19.76±3.82 mm (Plt;0.01), but it was maintained to 19.27±3.41 mm3 months later, with no significant difference(Pgt;0.05). The patients’ kyphosis Cobb angle was significantly improved to 8.71±5.41° (P<0.05) , but it was maintained to 9.52±5.66° 3 months later, with no significant difference(Pgt;0.05). The heights of the adjacent discs remained unchanged. No complication was observedduring and after operation, and the radiological and the CT scanning evaluations 3 months later showed no failure of the internal fixation. Conclusion The superior and posterior partial resection of the fractured vertebral body followedby the single segmental fusion can effectively decompress the vertebral canal and maintain the spine stability in treatment of the Denis B type fracture thoughthe longterm effectiveness requires a further follow-up.
ObjectiveTo evaluate the feasibility and the effectiveness of minimally invasive passage in posterior laminotomy decompression and intervertebral bone grafting combined with percutaneous pedicle screw fixation for the treatment of Denis type B thoracolumbar burst fractures. MethodsBetween January 2013 and March 2015, 53 patients with Denis type B thoracolumbar burst fractures were treated by minimally invasive passage in posterior laminotomy decompression and intervertebral bone grafting combined with percutaneous pedicle screw fixation. There were 37 males and 16 females with a mean age of 43 years (range, 16-57 years). The causes included falling injury from height in 23 cases, traffic accident injury in 15 cases, heavy pound injury in 7 cases, and falling injury in 8 cases. The time between injury and operation was 7 hours to 12 days (mean, 6.7 days). The involved segments included T11 in 2 cases, T12 in 7 cases, L1 in 20 cases, L2 in 18 cases, and L3 in 6 cases; based on the neurological classification of spinal cord injury by American Spinal Injury Association (ASIA), 3 cases were rated as grade A, 5 cases as grade B, 12 cases as grade C, 24 cases as grade D, and 9 cases as grade E. The operation time, bleeding volume, and postoperative drainage were recorded; postoperative visual analogue scale (VAS) was used for pain evaluation, and ASIA for neurological function assessment; CT and X-ray films were taken to observe fracture healing, bone fusion, and grafted bone absorption; The vertebral canal patency rate was calculated; the relative height of fractured vertebrae and Cobb angle were measured. ResultsThe operation was successfully completed in all patients; the average operation time was 150 minutes (range, 90-240 minutes); the average bleeding volume was 350 mL (range, 50-500 mL); the average postoperative drainage was 80 mL (range, 20-150 mL); and the average VAS score was 2.3 (range, 1.5-4.7) at 3 days after operation. The incisions healed primarily. All the patients were followed up 12-19 months (mean, 15 months). All fractures healed at 3-9 months (mean, 6 months). No complications of broken nails, broken rod, and screw loosening occurred. At last follow-up, the vertebral canal patency rate was significantly improved when compared with preoperative value (t=27.395, P=0.000). The Cobb angle, and the anterior and posterior heights of of traumatic vertebra were significantly improved at 1 week, 1 year, and last follow-up when compared with preoperative ones (P < 0.05), but there was no significant difference between different time points after operation (P > 0.05). The neurological function was improved in different degrees; 1 case was rated as grade A, 4 cases as grade B, 7 cases as grade C, 15 cases as grade D, and 26 cases as grade E, showing significant difference when compared with preoperative one (Z=-5.477, P=0.000). ConclusionMinimally invasive passage in posterior laminotomy decompression, bone graft in the injured vertebrae combined with percutaneous pedicle screw fixation is an effective method to treat Denis type B thoracolumbar burst fractures, which not only can fully decompression, but also can effectively maintain the postoperative injured vertebral height, reduce the postoperative failure risk of internal fixation and decrease operation trauma.
ObjectiveTo study the effectiveness of posterior laminotomy decompression and bone grafting via the injured vertebrae for treatment of thoracolumbar burst fractures. MethodsBetween November 2010 and November 2012, 58 patients with thoracolumbar burst fractures were treated by posterior fixation combined with posterior laminotomy decompression and intervertebral bone graft in the injured vertebrae. There were 40 males and 18 females with a mean age of 48 years (range, 25-58 years). According to Denis classification, 58 cases had burst fractures (Denis type B); based on neurological classification of spinal cord injury by American Spinal Injury Association (ASIA) classifications, 5 cases were rated as grade A, 18 cases as grade B, 20 cases as grade C, 14 cases as grade D, and 1 case as grade E. Based on thoracolumbar burst fractures CT classifications there were 5 cases of type A, 20 cases of type B1, 10 cases of type B2, and 23 cases of type C. The time between injury and operation was 10 hours to 9 days (mean, 7.2 days). The CT was taken to measure the space occupying of vertebral canal. The X-ray film was taken to measure the relative height of fractured vertebrae for evaluating the vertebral height restoration, Cobb angle for evaluating the correction of kyphosis, and ASIA classification was conducted to evaluate the function recovery of the spinal cord. ResultsThe operations were performed successfully, and incisions healed primarily. All the patients were followed up 12-18 months (mean, 15 months). CT showed good bone graft healing except partial absorption of vertebral body grafted bone; no loosening or breakage of screws and rods occurred. The stenosis rates of fractured vertebral canale were 47.56%±14.61% at preoperation and 1.26%±0.62% at 1 year after operation, showing significant difference (t=24.46, P=0.00). The Cobb angles were (16.98±3.67)° at preoperation, (3.42±1.45)° at 1 week after operation, (3.82±1.60)° at 1 year after operation, and (4.84±1.70)° at 3 months after removal of internal fixation, showing significant differences between at pre-and post-operation (P < 0.05). The relative heights of fractured vertebrae were 57.10%±6.52% at preoperation, 96.26%±1.94% at 1 week after operation, 96.11%±1.97% at 1 year after operation, and 96.03%±1.96% at 3 months after removal of internal fixation, showing significant differences between at pre-and post-operation (P < 0.05). At 1 year after operation, the neural function was improved 1-3 grades in 56 cases. Based on ASIA classifications, 1 case was rated as grade A, 4 cases as grade B, 10 cases as grade C, 23 cases as grade D, and 20 cases as grade E. ConclusionTreatment of thoracic and lumbar vertebrae burst fractures by posterior laminotomy decompression and bone grafting via the injured vertebrae has satisfactory effectiveness, which can reconstruct vertebral body shape and height with spinal cord decompression and good vertebral healing. It is a kind of effective solution for thoracolumbar burst fracture.