To evaluate the fatigue behavior of nitinol stents, we used the finite element method to simulate the manufacture processes of nitinol stents, including expanding, annealing, crimping, and releasing procedure in applications of the clinical treatments. Meanwhile, we also studied the effect of the crown area dimension of stent on strain distribution. We then applied a fatigue diagram to investigate the fatigue characteristics of nitinol stents. The results showed that the maximum strain of all three stent structures, which had different crown area dimensions under vessel loads, located at the transition area between the crown and the strut, but comparable deformation appeared at the inner side of the crown area center. The cause of these results was that the difference of the area moment of inertia determined by the crown dimension induced the difference of strain distribution in stent structure. Moreover, it can be drawn from the fatigue diagrams that the fatigue performance got the best result when the crown area dimension equaled to the intermediate value. The above results proved that the fatigue property of nitinol stent had a close relationship with the dimension of stent crown area, but there was no positive correlation.
Objective To evaluate clinical efficacy of four-claw Ti-planes for internal fixation of multiple rib fractures and flail chest. Methods Clinical data of 93 patients with multiple rib fractures and flail chest who were admittedto Shanghai Pudong Hospital from December 2011 to November 2012 were retrospectively analyzed. There were 78 male and 15 female patients with their age of 20-80 years. All the patients received internal fixation of rib fractures using four-clawTi-planes. Finite element modeling and analysis were performed to investigate biomechanical behaviors of rib fractures after internal fixation with four-claw Ti-planes. Results The average number of rib fractures of the 93 patients was 5.9±2.1,and each patient received 3.8±1.3 four-claw Ti-planes for internal fixation. The operations were performed 6.3±3.2 days after admission. After the rib fractures were fixed with four-claw Ti-planes,rib dislocations and chest-wall collapse of flail chest were restored,and patients’ pain was relieved. Postoperative CT image reconstruction of the chest showed no dislocationor displacement at the fixation areas of the four-claw Ti-planes. Rib fractures were stabilized well,and normal contours of the chest were restored. Finite element analysis showed that the maximum bearable stress of the rib fractures after internal fixation with four-claw Ti-planes was twice as large as normal ribs. Conclusion Clinical outcomes of four-claw Ti-planesfor internal fixation of rib fractures are satisfactory with small incisions and less muscle injury of the chest wall,so this technique deserves wide clinical use.
Numerical simulation of stent deployment is very important to the surgical planning and risk assess of the interventional treatment for the cardio-cerebrovascular diseases. Our group developed a framework to deploy the braided stent and the stent graft virtually by finite element simulation. By using the framework, the whole process of the deployment of the flow diverter to treat a cerebral aneurysm was simulated, and the deformation of the parent artery and the distributions of the stress in the parent artery wall were investigated. The results provided some information to improve the intervention of cerebral aneurysm and optimize the design of the flow diverter. Furthermore, the whole process of the deployment of the stent graft to treat an aortic dissection was simulated, and the distributions of the stress in the aortic wall were investigated when the different oversize ratio of the stent graft was selected. The simulation results proved that the maximum stress located at the position where the bare metal ring touched the artery wall. The results also can be applied to improve the intervention of the aortic dissection and the design of the stent graft.