ObjectiveTo explore the clinical value of computer-assisted surgical planning in the treatment of ankle fractures. MethodsBetween January 2012 and January 2014, open reduction and internal fixation were performed on 42 patients with ankle fractures. There were 22 males and 20 females with an average age of 52 years (range, 19-72 years). The causes were spraining injury (20 cases), traffic accident injury (14 cases), and falling from height injury (8 cases). The time from injury to operation was 5 hours to 12 days (mean, 2.5 days). All fractures were closed trimalleolar fractures. According to Lauge-Hansen classification, 25 cases were rated as supination extorsion type IV, 13 as pronation extorsion type IV, and 4 as pronation abduction type Ⅲ. The preoperative planning was made by virtual reduction and internal fixation using Superimage software. ResultsThe mean operation time was 93.7 minutes (range, 76-120 minutes). Delayed wound healing occurred in 1 case, and secondary healing was obtained after treatment; primary healing of incision was achieved in the other patients. Postoperative X-ray films and CT images showed anatomic reduction of fracture and good position of internal fixation. All patients were followed up 14.6 months on average (range, 9-27 months). The range of motion of the affected ankle was close to the normal side at 6-8 weeks. The mean fracture healing time was 13.1 weeks (range, 11-17 weeks). Degenerative change of the ankle joint was observed in 3 cases (7.1%) with manifestation of mild narrowing of joint space on the X-ray films at last follow-up. According to Baird-Jackson score system, the results were excellent in 24 cases, good in 13 cases, and fair in 5 cases, with an excellent and good rate of 88%. ConclusionComputer-assisted surgical planning for ankle fractures can help surgeons identify type of ankle fractures and improve surgical scheme for guiding fracture reduction and selecting and placing implants, so good effectiveness can be obtained.
ObjectiveTo observe the effect of stromal vascular fraction cells (SVFs) from rat fat tissue combined with sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) in promoting the lumbar fusion in rat model.MethodsSVFs were harvested from subcutaneous fat of bilateral inguinal region of 4-month-old rat through the collagenase I digestion. The sustained release carrier was prepared via covalent bond of the rhBMP-2 and β-tricalcium phosphate (β-TCP) by the biominetic apatite coating process. The sustained release effect was measured by BCA method. Thirty-two rats were selected to establish the posterolateral lumbar fusion model and were divided into 4 groups, 8 rats each group. The decalcified bone matrix (DBX) scaffold+PBS, DBX scaffold+rhBMP-2/β-TCP sustained release carrier, DBX scaffold+SVFs, and DBX scaffold+rhBMP-2/β-TCP sustained release carrier+SVFs were implanted in groups A, B, C, and D respectively. X-ray films, manual spine palpation, and high-resolution micro-CT were used to evaluate spinal fusion at 8 weeks after operation; bone mineral density (BMD) and bone volume fraction were analyzed; the new bone formation was evaluated by HE staining and Masson’s trichrome staining, osteocalcin (OCN) was detected by immunohistochemical staining.ResultsThe cumulative release amount of rhBMP-2 was about 40% at 2 weeks, indicating sustained release effect of rhBMP-2; while the control group was almost released within 2 weeks. At 8 weeks, the combination of manual spine palpation, X-ray, and micro-CT evaluation showed that group D had the strongest bone formation (100%, 8/8), followed by group B (75%, 6/8), group C (37.5%, 3/8), and group A (12.5%, 1/8). Micro-CT analysis showed BMD and bone volume fraction were significantly higher in group D than groups A, B, and C (P<0.05), and in group B than groups A and C (P<0.05). HE staining, Masson’s trichrome staining, and immunohistochemistry staining for OCN staining exhibited a large number of cartilage cells with bone matrix deposition, and an active osteogenic process similar to the mineralization of long bones in group D. The bone formation of group B was weaker than that of group D, and there was no effective new bone formation in groups A and C.ConclusionThe combination of sustained release of rhBMP-2 and freshly SVFs can significantly promote spinal fusion in rat model, providing a theoretical basis for further clinical applications.