Objective To systematically evaluate the orthotic effect of functional electrical stimulation (FES) on the improvement of walking in stroke patients with foot drop. Methods The randomized controlled trials (RCTs) that investigated the orthotic effect of FES on walking in stroke patients with foot drop were electronically searched in the databases such as PubMed, Web of Science, The Cochrane Library (Issue 1, 2013), EMbase, CBM, CNKI, VIP and WanFang Data from January 2000 to January 2013, and the relevant references of included papers were also manually searched. Two reviewers independently screened the trials according to the inclusion and exclusion criteria, extracted the data, and assessed the methodology quality. The meta-analyses were performed using RevMan 5.1 software. Results A total of 8 RCTs involving 255 patients were included. The results of meta-analyses on 4 RCTs showed that, compared with the conventional rehabilitation intervention, the functional electrical stimulation could significantly improve the walking speed, with significant difference (MD=0.09, 95%CI 0.00 to 0.18, P=0.04). The other indicators were only descriptively analyzed due to the incomplete data. Conclusions Functional electrical stimulation is effective in improving walking speed, but it is uncertain of other therapeutic indicators. So it should be further proved by conducting more high quality, large sample and multi-center RCTs.
Objective To review researches of treatment of peripheral nerve injury with neuromuscular electrical stimulation (NMES) regarding mechanism, parameters, and cl inical appl ication at home and abroad. Methods The latest original l iterature concerning treatment of peri pheral nerve injury with NMES was extensively reviewed. Results NMES should be used under individual parameters and proper mode of stimulation at early stage of injury. It could promote nerve regeneration and prevent muscle atrophy. Conclusion NMES plays an important role in cl inical appl ication of treating peripheral nerve injury, and implantable stimulation will be the future.
OBJECTIVE: To study the influence of the electric stimulation of denervated muscle atrophy. METHODS: Sixteen SD rats were made the model of denervated skeletal muscle in two lower limbs by cutting off the sciatic nerve and femoral nerve. The right gastrocnemius muscle was stimulated with JNR-II nerve amp; muscle recovery instrument by skin as the experimental side and the left was not treated as the control side. The muscle histology, ultrastructure, fibrillation potential amplitude, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities were observed 2 weeks and 4 weeks after operation. RESULTS: Electric stimulation could protect mitochondria and sarcoplasmic reticulum from the degeneration. The reduction rates of muscle cell diameter and cross section in the experimental side were slower significantly than those in control side. There was no influence on fibrillation potential amplitude in the both sides after electric stimulation. The reduction rates of Na(+)-K(+)-ATPase activity in the experimental side were slower 15.59% and 27.38% respectively than those in the control side. The reduction rates of Ca(2+)-ATPase activity in the experimental side were slower 4.83% and 21.64% respectively than those in the control side. CONCLUSION: The electric stimulation can protect muscle histology, electrophysiology and enzymic histochemistry of denervated skeletal muscle from the degeneration. The electric stimulation is an effective method to prevent and treat muscle atrophy.
OBJECTIVE: To investigate an alternative procedure for complete denervation of bladder in the supra-cone cord injury to restore the bladder function. METHODS: Sixteen dogs were included in this study after their spinal cords were transected above the cone. They were divided into 6 groups and performed the rhizotomy of L7 to S3 root in different combination respectively. The bladder and urethra pressure change by electrostimulation during operation and cystometrogram change after operation were tested. RESULTS: 1. Electrostimulation study: for bladder innervation, S2was the most important and S1 was secondary. While for urethra innervation, S1 was more important than S2. When the anterior and posterior roots of S1 and S2 were intact with rhizotomy of posterior roots of L7 and S3, stimulated the common or posterior root of S1 and S2, the change of pressure in bladder and urethra was the same. When the anterior roots of S1 and S2 were resected with rhizotomy of posterior roots of L7 and S3, the pressure in bladder and urethra was significant decreased compared to stimulating the corresponding posterior roots. 2. Cystometrogram (CMG) study: in the complete deafferented group, resecting the posterior roots of L7 to S3, the bladder became flaccid. While resecting the posterior root of S2 and anterior root of S1 or, resecting the posterior root of S1 and anterior root of S2, combining with rhizotomy of posterior roots of L7 and S3, the CMG curve was similar to the complete deafferented group. In the S1 and S2 intact group, the bladder became spastic. CONCLUSION: Combining rhizotomy of anterior and posterior sacral root in different level has the same effects on bladder as complete deafferentation.
In order to enhance the therapeutic effectiveness of peripheral nerve injury, intraoperative extrab electrical stimulation was used in peripheral nerve surgery. In 16 cases of incomplete peripheral rnerve injuries or poorly regeneratedn erves, continuous intraoperative electrophysiological monitoring was used for guidance of neurolysis. Meanwhile, extrastong electrical stimulation was applied. The latency and amplitude before and after electrical stimulation were recorded and the extent of improrement was compared. In all cases, the latency and amplitude were improved after neurolysis and electrical stimulation. Clinical follow-up also showed that the function of corresponding innorvated muscle was improved. Continuous intraoperative extrab electrical stimulation could be used as an practical measure to increase the effectiveness of peripheral nerve treatment.
To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.
Abstract This experiment was to study the feasibility from direct observation of muscle contraction of the lower extremity fromelectrical stimulation threshold of nerve fascicle in identifying the Iα intrafusal afferent fibers during selective posterior rhizotomy (SPR) and to investigate the clinical relationship between the muscle spasm and the electrical stimulation of nerve fascicles. The electrical stimulation threshold of all nerve fascicles in 36 cases during SPR were analysed statistically. The results showed that there was a significant difference between the electrical stimulation threshold of the severed nerve fascicles and intact nerve fascicles no matter the nerve root or each posterior nerve rootlet was examined. It was simple and reliable for surgeons to identify correctly the Iα intrafusal afferent fibers intraoperatively from direct observation of the electrical stimulation threshold of nerve fascicle.
An experimental study on Holland pigs was designed to evaluate the effect of direct current stimulation on the rate of epidermie regeneration. The 44 animals were divided into four groups, each of eleven animals and the stimulation levels were 10~uADC, 30~uADC, 50~uADC,0~uADC respectively. The results showed that the rate of regeneration of epidermic cell and wound healing was faster with the DC stimulation directly than indirectly, especially in the area of negative electrode and the rate of wound healing with the DC stimulation indirectly was faster than without DC stimulation. Proper applications dircct eurrent of appropriate intensity were definitely beneficial in the treatnent of patienls donor site after removing a thick split-thickness skin graft.