Objective To explore the expression characteristics of chaperone interacting protein (CHIP) in normal, scar and chronic ulcer tissues and its relationship with wound healing. Methods Twenty biopsies including scar tissues(n=8), chronic ulcer tissues(n=4) and normal tissues(n=8)were used in this study. The immunohistochemical staining (power visionTMtwo-step histostaining reagent) was used to explore the amount and expression characteristics of such protein.Results The positive expression of CHIP was observed in fibroblasts, endothelial cells and epidermal cells in dermis and epidermis. It was not seen ininflammatory cells. The expression amount of CHIP in scar tissues, chronic ulcer tissues and normal tissues was 89%, 83% and 17% respectively. Conclusion Although the function of CHIP is not fully understood at present, the fact that this protein is expressed only at the mitogenic cells indicates that it may be involved in mitogenic regulation during wound healing.
To investigate the inhibitory effect of Col I A1 antisense ol igodeoxyneucleotide (ASODN) transfection mediated by cationic l iposome on Col I A1 expression in human hypertrophic scar fibroblasts. Methods Scar tissue was obtained from volunteer donor. Human hypertrophic scar fibroblasts were cultured by tissue block method. The cells at passage 4 were seeded in a 6 well cell culture plate at 32.25 × 104 cells/well, and then divided into 4 groups: group A, l iposomeand Col I A1 ASODN; group B, Col I A1 ASODN; group C, l iposome; group D, blank control. At 8 hours, 1, 2, 3 and 4 days after transfection, total RNA of the cells were extracted, the expression level of Col I A1 mRNA was detected by RT-PCR, the Col I A1 protein in ECM was extracted by pepsin-digestion method, its concentration was detected by ELISA method. Results Agarose gel electrophoresis detection of ampl ified products showed clear bands without occurrence of indistinct band, obvious primer dimmer and tailing phenomenon. Relative expression level of Col I A1 mRNA: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), and groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (Pgt; 0.05); at 1 day after transfection, groups A and B were less than groups C and D (P lt; 0.05), and there was no significant difference between group A and group B, and between group C and group D (P gt; 0.05 ); at 2 days after transfection, there were significant differences among four groups (P lt; 0.05); at 3 and 4 days after transfection, group A was less than groups B, C and D (P lt; 0.05), group B was less than groups C and D (P lt; 0.05), and no significant difference was evident between group C and group D (P gt; 0.05). Concentration of Col I protein: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (P gt; 0.05); at 1 day after transfection, significant differences were evident among four groups (P lt; 0.05); at 2, 3 and 4 days after tranfection, groups A and B were less than groups C and D (P lt; 0.05), and no significant difference was evident between group A and group B (P gt; 0.05). Conclusion Col I A1 ASODN can inhibit mRNA and protein expression level of Col I A1. Cationic l iposome, as the carrier, can enhance the inhibition by facil itating the entry of ASODN into cells and introducing ASODN into cell nucleus.
Objective To investigate the effects of asiaticoside onthe proliferation and the Smad signal pathway of the hypertrophic scar fibroblasts.Methods The hypertrophic scar fibroblasts were cultured with tissue culture method. The expressions of Smad2 and Smad7 mRNA after asiaticoside treatment were determined by reverse transcriptionpolymerase chain reaction 48 hours later. Thecell cycle, the cell proliferation, the cell apoptosis and the expression of phosphorylated Smad2 and Smad7 with(experimental group) or without(control group) asiaticoside were detected with flow cytometry, immunocytochemistry and Western blot. Results Asiaticoside inhibited the hypertrophic scar fibroblasts from phase S to phase M. The Smad7 content and the expression of Smad7 mRNA were (1.33±1.26)% and (50.80±22.40)% in experimental group, and (9.15±3.36)% and (32.18±17.84)% in control group; there were significant differences between two groups (P<0.05). While the content and the mRNA expression of Smad2 had no significant difference between two groups. Conclusion Asiaticoside inhibits the scar formation through Smad signal pathway.
ObjectiveTo evaluate the effectiveness of different flaps for repair of severe palm scar contracture deformity. MethodsBetween February 2013 and March 2015, thirteen cases of severe palm scar contracture deformity were included in the retrospective review. There were 10 males and 3 females, aged from 14 to 54 years (mean, 39 years). The causes included burn in 9 cases, hot-crush injury in 2 cases, chemical burn in 1 case, and electric burn in 1 case. The disease duration was 6 months to 6 years (mean, 2.3 years). After excising scar, releasing contracture and interrupting adherent muscle and tendon, the soft tissues and skin defects ranged from 6.0 cm×4.5 cm to 17.0 cm×7.5 cm. The radial artery retrograde island flap was used in 2 cases, the pedicled abdominal flaps in 4 cases, the thoracodorsal artery perforator flap in 2 cases, the anterolateral thigh flap in 1 case, and the scapular free flap in 4 cases. The size of flap ranged from 6.0 cm×4.5 cm to 17.0 cm×7.5 cm. ResultsAll flaps survived well. Venous thrombosis of the pedicled abdominal flaps occurred in 1 case, which was cured after dressing change, and healing by first intention was obtained in the others. The mean follow-up time was 8 months (range, 6-14 months). Eight cases underwent operation for 1-3 times to make the flap thinner. At last follow-up, the flaps had good color, and the results of appearance and function were satisfactory. ConclusionSevere palm scar contracture deformity can be effectively repaired by proper application of different flaps.
The authors reported nine patients with burn scar contracture of head and face treated by operation. The varieties of operations ineiuded: (1) excision of the scar and primary closure of the wound; (2) excision of the scar and coverage of the wound with split or full thickness skin grafts; (3) excision of the scar and repaired by pedicled flap, and (4) skin expansion by expander, followed by excision the scar and transfer of the "more available skin flap" to the wound. According to certain characteristics of children, the choice of the time for operation, the indications of each methods, and some problems related to operation ahd been discussed.
The ultrastructures of 14 keloids and 7 hypertrophic scars were examined by electron micrascopy.Both lesions were found to be comprised of fibroblasts, macrophages, microfi brils of collagen andmicrovessels which were partly or completely obliterated. Most fibroblasts were of active cell types.They contained abundant coarse endoplasmic reticulum and prominent Golgi complexes. The fibrils inthe lesions were irtegularly arranged. Meanwhile myofibroblasts were often seen in the keloid.In the cytoplasm of the myofibroblasts, in addition to coarse endoplasmic reticulum and Golgi complexes, many fine myofilaments, dense bodies, dense patches and distrupted basal lamina were present. These characteristic features might help to differentiate keloid from hypertrophic sacr.
ObjectiveTo investigate the feasibil ity and effectiveness of using scar spl it thickness skin grafts combined with acellular allogeneic dermis in the treatment of large deep Ⅱ degree burn scar. MethodsBetween January 2013 and December 2013, 20 cases of large deep Ⅱ degree burn scar undergoing plastic operation were enrolled. There were 14 males and 6 females, aged 4 to 60 years (mean, 40 years). Burn reasons included hydrothermal burns in 10 cases, flame burns in 9 cases, and lime burns in 1 case. The burn area accounted for 70% to 96% total body surface area (TBSA) with an average of 79% TBSA. The time from wound healing to scar repair was 3 months to 2 years (mean, 7 months). Based on self-control, 0.7 mm scar spl it thickness skin graft was used to repair the wound at the right side of joints after scar resection (control group, n=35), 0.5 mm scar spl it thickness skin graft combined with acellular allogeneic dermis at the left side of joints (trial group, n=30). Difference was not statistically significant in the scar sites between 2 groups (Z=-1.152, P=0.249). After grafting, negative pressure drainage was given for 10 days; plaster was used for immobilization till wound heal ing; and all patients underwent regular rehabil itation exercises. ResultsNo significant difference was found in wound heal ing, infection, and healing time between 2 groups (P>0.05). All patients were followed up for 6 months. According to the Vancouver Scar Scale (VSS), the score was 5.23±1.41 in trial group and was 10.17±2.26 in control group, showing significant difference (t=8.925, P=0.000). Referring to Activities of Daily Living (ADL) grading standards to assess joint function, the results were excellent in 8 cases, good in 20 cases, fair in 1 case, and poor in 1 case in trial group; the results were excellent in 3 cases, good in 5 cases, fair in 22 cases, and poor in 5 cases in control group; and difference was statistically significant (Z=-4.894, P=0.000). ConclusionA combination of scar spl it thickness skin graft and acellular allogeneic dermis in the treatment of large deep Ⅱ degree burn scar is feasible and can become one of solution to the problem of skin source tension.
Free calcium ions, as a kind of message-transport substance, is important in cellular activity such as cell movement, cell differentiation and cell proliferation. In order to investigate the relationship between free calcium ions and scar contracture, the fibroblasts which originated from hypertrophic scar, keloid and normal skin were used as the experimental target. The fibroblasts from 4th-6th generations of different sources were used; Then the intracellular free calcium ions concentrations were measured respectively by the fluorescent Ca2+ indicator Fura-2/AM and Image analysis system. The results showed that the level of Ca2+ in fibroblasts of hypertrophic scar was higher than that in keloid and normal skin (P lt; 0.01). There was no significant difference between the level of Ca2+ in keloid and in normal skin. The conclusion was that the concentration of intracellular free calcium ions played an important role in the scar contract, but the exact mechanism was still unclear and required further study.