Cardiac injury is a major complication of cardiac surgery. Surgical manipulation, systemic inflammatory response and cardiac ischemia/reperfusion injury (IRI)are main reasons of cardiac injury. Gentle and swift surgical manipulation can reduce mechanical myocardial injury, shorten myocardial ischemic time, and reduce myocardial IRI. Satisfactory myocardial protection plays a key role to improve postoperative recovery. In recent years, more and more myocardial protection strategies are employed to reduce myocardial IRI and improve myocardial protection, including modifications of temperature, composition and instillation approach of cardioplegia in order to increase myocardial oxygen supply, decrease myocardial oxygen consumption, inhibit inflammatory response and eliminate oxygen free radicals. Endogenous myocardial protection is also achieved by supplement of certain medications in cardioplegia.
In left heart disease, pulmonary artery pressure would increase due to the elevated left atrial pressure. This type of pulmonary hypertension (PH) is belonged to type Ⅱ as a passive PH (pPH) in its classification. The essential cause of pPH is excessive blood volume. Recently, we have identified another type of pPH, which is induced by vasopressors. Vasopressor-induced pPH shares similar pathophysiological manifestations with left heart disease-induced pPH. pPH would, therefore, be aggressive if vasopressors were applied in patients with left heart disease, which may be common after cardiac surgery, because heart undergoing surgical trauma may require support of vasopressors. Unfortunately, pPH after cardiac surgery is often ignored because of the difficulty in diagnosis. To improve the understanding of pPH and its effect on outcomes, here we highlight the mechanisms of interaction between vasopressor-induced and left heart failure-induced pPH, and provide insights into its therapeutic options.
ObjectiveTo investigate the protective effect and mechanism of curcumin on lipopolysaccharide (LPS)-induced acute lung injury.MethodsTotally 24 SD rats were randomly divided into a control group, a LPS group and a LPS+curcumin group (n=8 in each group). The degree of lung injury (oxygen partial pressure, wet/dry ratio, pathological scores) and inflammatory levels [tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, Toll-like receptor 4 (TLR4), mobility group box 1 protein (HMGB1) expression] of the lung were detected in different groups.ResultsOxygen partial pressure was significantly lower in the LPS group than that in the control group (P<0.05), while wet/dry ratio, pathological scores and expression levels of TNF-α, IL-6, MCP-1, TLR4 and HMGB1 were significantly higher in the LPS group than those in the control group (P<0.05). Compared with the LPS group, curcumin significantly reduced wet/dry ratio, pathological scores and expression levels of TNF-α, IL-6, MCP-1, TLR4 and HMGB1 in the LPS+curcumin group (P<0.05), while it significantly improved oxygen partial pressure (P<0.05).ConclusionCurcumin might protect LPS-induced acute lung injury through inhibition of TLR4-HMGB1-inflammation pathway.
The apical displacement of tricuspid valve leaflets complicated with significantly enlarged, thin and fibrotic wall of the right ventricle is prone to dysfunction of right heart. Therefore, the myocardial protection for the right ventricle is important. Based on the pathological changes, an algorithm of perioperative myocardial protection strategy is summarized. Firstly, we should clearly know that the right ventricular myocardium with severe lesions is much different from the unimpaired myocardium, because it is now on the margin of failure; secondly, right heart protection should be regarded as a systematic project, which runs through preoperative, intraoperative and postoperative periods, and requires close collaboration among surgeons, perfusionists, anesthesiologists and ICU physicians. In this article, we try to introduce the systematic project of the right heart protection, in order to improve the outcome of this population.