ObjectiveTo explore the value of multidisciplinary team (MDT) discussion in the comprehensive treatment of HER-2 positive breast cancer.MethodThe clinical data of 2 patients with HER-2 positive breast cancer admitted to the Affiliated Hospital of Southwest Medical University after MDT discussions were analyzed retrospectively.ResultsCase 1 was a 32-year-old woman diagnosed with left breast non-special type invasive carcinoma at admission, cT2N1M0, stage ⅡB, WHO grade 2, ER (–), PR (–), HER-2 (+++), Ki-67 (+, 20%). After MDT discussion, the patient was treated with neoadjuvant chemotherapy for 6 cycles, and the efficacy evaluation was partial response, received left breast conserving surgery and axillary lymph node dissection (ALND), postoperative staging ypT1aN1ycM0, stage ⅡA, Miller-Payne grade 4, the patient was satisfied with the shape of breast, received radiotherapy and anti-HER-2 therapy after surgery. At present, there was no recurrence and metastasis during anti-HER-2 therapy. Case 2 was diagnosed with right breast non-special type invasive carcinoma at admission, cT3N0M0, stage ⅡB, WHO grade 3, ER (–), PR (–), HER-2 (+++), Ki-67 (+, 40%), local advanced breast cancer. After MDT discussion, the patient was treated with neoadjuvant chemotherapy for 2 cycles, and the efficacy evaluation was progressive disease. After the replacement of two neoadjuvant chemotherapy regimen, the efficacy evaluation was still progressive disease. Finally after MDT discussion, the patient received right breast mastectomy and ALND, postoperative staging ypT4bN1ycM0, stage ⅢB, Miller-Payne grade 1, received radiotherapy, adjuvant treatment with pyrotinib and capecitabine after surgery. The patient was followed up for 3 months by telephone, the patient did not follow the doctor’ instructions, no recurrence and metastasis was found in the review.ConclusionUnder the precision medical system, comprehensive treatment of breast cancer based on the MDT model could target patients’ disease characteristics, physical conditions, previous diagnosis and treatment, family situation, and other individual factors, formulate the best personal treatment plan for patients, and bring greater benefits to patients.
Abstract Precision medicine is an ideal medical paradigm which combines modern scientific methods with traditional medical methods to diagnose, treat and evaluate the physical function and nature of diseases more precisely, and to maximize health benefits and minimize the risk of individuals and society with the most effective, safest, and the most economical medical service. Evidence-based medicine is necessary to verify the precision of diagnosis and treatment. In this review, we clarified the conception of precision medicine and the relation between precision medicine and evidence-based medicine. Moreover, we reviewed the application of precision medicine in the field of cerebrovascular disease. We pointed out that such new technologies as genetics, bioinformatics, molecular imaging and management provided tools to realize the idea of precision medicine, and high-quality evidence-based studies provided a guarantee for the clinical practice of precision medicine. In summary, precision medicine is an individualized medical mode that based on the context of a patient's genetic information, living environment and clinical data, etc. to provide precise treatment strategies for the prevention and treatment of disease, but still the promotion of precision medicine should be based on clinical validation under the guidance of evidence-based medicine. Thus, long-term exploration and unremitting efforts are required to achieve the idea of precision medicine.
As one of the most breakthrough cutting-edge technologies in the biomedical field in recent years, organoid culture technology can use cells derived from, either (pluripotent) stem cells or tissue-derived differentiated/progenitor cells (foetal, neonatal, or adult) to form 3D multicellular structure organoids with self-organizing and recapitulating at least some features of the organ including tissue architecture or function abilities. Recently, organoids have been widely used in disease model construction, anti-cancer drug screening, gene or cell therapy, etc., providing an ideal model for basic biomedical research, drug development and clinical precision medicine, and has shown an important role in regenerative medicine.
Basing on development of medical model, new national diagnostic standard is interpreted according to three aspects: classification, diagnostic standard, and diagnostic contents. Tracheobronchial tuberculosis and tuberculous pleurisy are added into the classification. The value of molecular and pathological techniques for diagnosis of the pulmonary tuberculosis is emphasized. The status of drug-resistance is included in the diagnostic content. Two opinions are suggested: some practical methods such as diagnostic chemotherapy are indicated in some grassroots areas, while new molecular techniques for detection of DNA/RNA of mycobacteria and resistant mutation are encouraged in some suitable institutions.
Precision medicine is a medical paradigm founded on individual genetic information amalgamated with extensive clinical data to offer patients precise diagnoses and treatments. Genetic testing forms the cornerstone of accurate diagnosis, and skilled professionals in fields like clinical medicine, molecular biology, and bioinformatics play a crucial role in realizing the potential of precision medicine. This paper presents reference suggestions for the continuing education approach for relevant technical personnel. The main emphasis is on conducting routine face-to-face and hands-on training to enhance theoretical knowledge and professional skills. Secondly, there is a need to modify the training approach by reinforcing molecular biology, bioinformatics, and other courses, enhancing assessment methods, gradually implementing specialized training in precision medicine subspecialties, and ensuring effective clinical practice and management of precision medicine.
ObjectiveTo summarize the application of radiomics in colorectal cancer.MethodsRelevant literatures about the therapeutic decision-making, therapeutic, and prognostic evaluation of colorectal cancer using radiomics were collected to make an review.ResultsRadiomics is of great value in preoperative stages, therapeutic, and prognostic evaluation in colorectal cancer.ConclusionRadiomics is an important part of precision medical imaging for colorectal cancer.
Liddle syndrome and Gordon syndrome are two rare single-gene inherited hypertension diseases. In patients≤40 years, the prevalence of Liddle syndrome is about 1% and Gordon syndrome is uncertain all over the word, for which is often misdiagnosed and mistreated. The therapies of those diseases are targeted at gene mutation sites, as well as combined with modified lifestyle, and can achieve satisfactory diseases control. This paper reports a patient who is diagnosed with Liddle syndrome and Gordon syndrome at the same time. We aimed to consolidate and improve the diagnosis and accurate treatment of those two diseases by sharing, studying and discussing together with clinical doctors.
Precision medicine is a novel medical modality based on genome sequencing, bioinformatics and big data science. The studies regarding tuberculosis always concentrated on the bacteria and host in the setting of precision medicine. This review mainly introduces the application of precision medicine in the diagnosis and treatment of tuberculosis. The limits of the Chinese studies with respect to precision medicine in tuberculosis are also discussed. Moreover, the article predicates its future development.