ObjectiveTo compare the effects of intravitreal tamponade of C3F8 with silicon oil on postoperative vitreous hemorrhage and visual prognosis after vitrectomy for proliferative diabetic retinopathy (PDR). MethodsThe clinical data of 121 patients (127 eyes) who underwent primary vitrectomy due to PDR were analyzed retrospectively. All the patients were divided into two groups according to different intravitreal tamponade, including C3F8 tamponade group (53 patients with 56 eyes) and silicone oil tamponade group (68 patients with 71 eyes). There was no difference of gender (χ2=0.956), age (t=1.122), duratiion of diabetes (t=0.627), fasting blood glucose (t=1.049), systolic pressure (t=1.056), diastolic pressure (t=0.517), history of hypertension (χ2=0.356), nephropathy (χ2=1.242), preoperative laser photocoagulation (χ2=1.225) and All the patients underwent three port pars plana vitrectomy. The mean follow-up was 2 years ranging from 6 months to 4 years. And then the incidence and onset time of postoperative vitreous hemorrhage and postoperative BCVA of the two groups were compared. ResultsPostoperative vitreous hemorrhage occurred in 14 of 56 eyes (25.00%) in C3F8 tamponade group. The average onset time of postoperative vitreous hemorrhage were (64.64±59.09) days ranging from 7-225 days and mostly were within 30-60 days (35.71%, 5/14). Postoperative vitreous hemorrhage also occurred in 7 of 71 eyes (9.89%) of silicone oil tamponade group after silicone oil removal with an average onset time of (25.29±20.46) days ranging from 3-65 days and were mostly within 15-30 days (42.86%, 3/7). There was a significant difference in the incidence of postoperative vitreous hemorrhage between the two groups (χ2=5.200, P<0.05). BCVA of the two groups was improved significantly after operation (Z=2.472, 3.114; P<0.05). Postoperative BCVA of silicone oil tamponade group was poorer than C3F8 tamponade group (Z=1.968, P<0.05). ConclusionBoth C3F8 and silicone oil tamponade can improve the visual acuity after vitrectomy for PDR. Compared with C3F8, silicone oil tamponade had lower incidence and late onset of postoperative vitreous hemorrhage after vitrectomy for PDR.
Objective To analyze the risk factors of no light perception (NLP) after vitreoretinal surgery for proliferative diabetic retinopathy (PDR). Methods Retrospectively analyzed the follow-up data of 882 patients (1000 eyes) with PDR who had undergone vitreoretinal surgery. The standard of NLP was: in a darkroom, one eye was covered, and the other one could not catch the candlelight 30 cm in front of the eye. The number of eyes with NLP was counted and the clinical data of the eyes with or without NLP were analyzed and compared. chi;2 test was used to analyze the risk factors of NLP. Results In these 1000 eyes with PDR,the postoperative visual acuity was NLP in 22 eyes (2.2%) and light perception in 978 eyes (97.8%). Comparing with the patients with light perception, the patients with NLP had severer disease condition, including ante-operative neovascular glaucoma (NVG)(36.4%), tension combined with retinal detachment 50%, and a need for lens excision during the surgery (45.5%) and for silicone oil filling at the end of the operation (63.6%). After the surgery, NVG was found in 14 eyes, un-reattached retina in 5 eyes (before the surgery was VI stage of PDR), and optic nerve atrophy and retinal vessel atresia in 3 eyes, which significantly differed from which in the patients with light perception (Plt;0.001,P=0.004, (Plt;0.001). The differences of sex, diabetes type and PDR stage between the NLP group and non-NLP group were not significant (P=0.136, P=0.681, P=0.955). Conclusions The incidence of NLP after vitreoretinal surgery for proliferative diabetic retinopathy is low. The direct causes were NVG, optic nerve atrophy, retinal vessel atresia and retinal redetachment, while the sex, type of diabetes mellitus and stage of PDR show no statistical relation to the occurrence of NLP after surgery. (Chin J Ocul Fundus Dis,2007,23:244-247)
ObjectiveTo observe the effect of preoperative intravitreal ranibizumab injection (IVR) on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective study was carried out with the 90 PDR patients (90 eyes) who underwent vitrectomy. The 90 patients(90 eyes)were assigned to the vitrectomy only group(43 eyes) and the IVR combined with vitrectomy group (47 eyes). The IVR was performed 5-13 days prior to vitrectomy in the IVR combined with vitrectomy group. There were 15 eyes with fibrous proliferation PDR (FPDR), 16 eyes with advanced PDR (APDR) without involving the macular and 16 eyes with APDR involving the macular in the vitrectomy only group. There were 14 eyes with FPDR, 15 eyes with APDR without involving the macular and 14 eyes with APDR involving the macular patients in the IVR combined with vitrectomy group. All the eyes in the two groups were regularly operated by the same doctor to complete the vitrectomy. The start and end time of vitrectomy were recorded. The average follow-up time was 10 months. The changes of best corrected visual acuity (BCVA) before and 1, 3 and 6 months after surgery were compared between the two groups. ResultsThe duration of operation of the FPDR type (t=-8.300) and the APDR involving the macular type (t=-2.418) in the IVR combined with vitrectomy group was shorter than vitrectomy only group (P < 0.05). The comparison of duration of operation of the APDR without involving the macular type in the two groups has no statistically significant difference (t=-1.685, P > 0.05). At 1 month after surgery, the comparison of BCVA of the IVR combined vitrectomy group and the vitrectomy only group in APDR involving the macular type has no statistically significant difference (t=0.126, P > 0.05). At 3, 6 months after surgery, the BCVA of the IVR combined vitrectomy group in APDR involving the macular type was significantly better than the BCVA of the vitrectomy only group (t=8.014, 7.808; P < 0.05). At 1, 3, and 6 months after surgery, the BCVA of the IVR combined vitrectomy group in FPDR type (t=3.809, 1.831, 0.600) and APDR without involving the macular type (t=0.003, 1.092, 3.931) compared with pre-treatment, the difference were not statistically significant (P > 0.05); the BCVA in APDR without involving the macular type compared with pre-treatment, the difference was distinctly statistically significant (t=2.940, 4.162, 6.446; P < 0.05); the BCVA in APDR involving the macular type (t=0.953, 1.682, 1.835) compared with pre-treatment, the difference were not statistically significant (P > 0.05). ConclusionPreoperative IVR of PDR can shorten the operation duration and improve the BCVA of APDR involving the macular type.
Objective To analyze the reasons, methods of treatment, and effects on prognosis of vitreous hemorrhage after vitrectomy in patients with diabetic retinopathy. Methods The clinical data of 98 patients (122 eyes) with diabetic retinopathy (VI stage) who had undergone vitrectomy were retrospectively analyzed. Results Post-vitrectomy vitreous hemorrhage (gt;grade 2) was found in 25 eyes with the occurrence of 20.5%, in which the hemorrhage occurred 1 week after the surgery in 8 eyes, 1 week to 1 month in 6 eyes, and more than 1 month in 11 eyes. In the 25 eyes, C3F8 tamponade eyes occupied 31.1%, silicone oil tamponade eyes occupied 6.1%, air tamponade eyes occupied 33.3%, and infusion solution tamponade eyes occupied 26.3%. Peripheral fibrovascular proliferation was found in 9 eyes. In the 3 eyes with silicone oil tamponade, the hemorrhage was absorbed in 2, and epiretinal membrane was found in 1 which was moved when the silicon oil was taken out. In the 22 eyes without silicone oil tamponade, the hemorrhage was absorbed in 6 and aggravated in 2 without any timely treatment, neovascular glaucoma occurred in 1, and wide vitreo-retinal proliferation and retinal detachment was observed in 1 with the visual acuity of no light perception. Operations such as fluid-air exchange, vitrectomy were performed on 14 eyes 2 weeks after the hemorrhage absorption stopped. Recurrent vitreous hemorrhage was not found in 12 eyes after single operation. At the end of the follow up period, the visual acuity was no light perception in 3 eyes, hand moving in 2 eyes, counting finger-0.1 in 10 eyes, under 0.3 in 4 eyes, and over 0.3 in 6 eyes. Conclusion Most of the patients with vitreous hemorrhage after vitrectomy due to DR had peripheral fibrovascular proliferation. The visual prognosis after re-operation is good. (Chin J Ocul Fundus Dis,2007,23:241-243)
Objective To analyze the pathogeny of vitreous re-hemorrhage in proliferative diabetic retinopathy (PDR) after vitrectomy, and to evaluate the treatment effects. Methods The clinical data of 315 eyes of 302 patients with PDR who had undergone vitrectomy were retrospectively analyzed. Thirty-two eyes with vitreous re-hemorrhage after the treatment had undergone vitrectomy again. The follow-up duration was 3-48 months (average 12 months). Results The occurrence of vitreous hemorrhage after vitrectomy was 10%. The reasons included fibrovascular ingrowth at the sclera incision (28%), residual neovascularization membrane or inappropriately treated vascular stump on the surface of optic nerve (19%), insufficient photocoagulation on retina (22%), residual epiretinal neovascularization membrane (9%), retinal vein occlusion (6%), and ocular trauma (16%). Re-hemorrhage occurred 1-210 days (average 51 days) after vitrectomy. The patients with re-hemorrhage underwent cryotherapy for fibrovascular at the incision site, removal of residual neovascularization membrane on the optic nerve and retina, electrocoagulation of the vascular stump, complementary retinal photocoagulation and binding up of two eyes. After the re-treatment, the visual acuity increased in 91% and decreased in 9%. The postoperative complications mainly included vitreous re-hemorrhage, posterior synechia of the iris, lens sclerosis, and delayed healing of corneal epithelium. Conclusion The main reasons of vitreous re-hemorrhage after vitrectomy in patients with PDR include fibrovascular ingrowth at sclera incision, residual neovascularization membrane or inappropriately treated vascular stump on the surface of optic nerve, insufficient photocoagulation on retina, residual epiretinal neovascularization membrane, retinal vein occlusion, and ocular trauma. The efficient methods in preventing and treating re-hemorrhage after vitrectomy are appropriate management of insection sites, completely removal of residual neovascularization membrane on the optic nerve and retina, electrocoagulation of the vessel stump and sufficient retinal photocoagulation. (Chin J Ocul Fundus Dis,238-240)