ObjectiveTo explore the hemodynamic effects of inhaled nitric oxide (iNO) on postoperative hemodynamic in patients with cyanotic congenital heart disease (CHD) combined with decreased pulmonary blood flow.MethodsFrom 2014 to 2018, there were 1 764 patients who received corrective repair of cyanotic CHD with decreased pulmonary blood flow in the Department of Pediatric Cardiac Surgery of Fuwai Hospital. We included 61 patients with the ratio of right ventricular systolic pressure to systolic blood pressure (SBP) ≥75% after weaning from cardiopulmonary bypass. There were 41 males and 20 females, with the age of 20.5 (9.0, 39.0) months and weight of 12.5±7.8 kg. The patients were divided into two groups: a conventional group (33 patients, conventional therapy only) and a combined therapy group (28 patients, iNO combined with conventional therapy). The hemodynamics during the first 24 hours after iNO therapy and the in-hospital outcomes of the two groups were investigated and compared.ResultsThere was no statistical difference between the two groups in demographic characteristics and surgical parameters (P>0.05). The hemodynamic effects of iNO within 24 hours included the decrease in the vasoactive inotropic score (VIS, 21.6±6.6 vs. 17.3±7.2, P=0.020) along with the increase in blood pressure (SBP: 73.7±9.7 mm Hg vs. 90.8±9.1 mm Hg, P<0.001) , the decrease in central venous pressure (10.0±3.1 mm Hg vs. 7.9±2.1 mm Hg, P=0.020), the decrease in lactate (2.2±1.7 mmol/L vs. 1.2±0.5 mmol/L, P<0.001) and increase in urine output [2.8±1.7 mL/(kg·h) vs. 4.9±2.2 mL/(kg·h), P<0.001]. The decrease of VIS at 24 h after the surgery in the conventional therapy group was not statistically significant (22.1±7.9 vs. 20.0±8.5, P=0.232). Besides, we discovered that the need for renal replacement therapy (RRT) was less in the combined therapy group than that in the conventional therapy group, especially in the moderate complicated surgery [risk adjustment in congenital heart surgery (RACHS-1) ≤3] subgroup (9.5% vs. 40.7%, P=0.016).ConclusionIn pediatric patients after corrective repair of cyanotic and pulmonary blood follow decreased CHD with increased pulmonary vascular resistance, iNO combined with conventional therapy can improve the hemodynamics effectively. Compared with the conventional therapy, the combined therapy with iNO can decrease the VIS and the need for RRT, which is beneficial to the postoperative recovery of patients.
Abstract: The cyanotic congenital heart defect remains a focal point to study in congenital heart diseases. A successfully developed model of cyanotic congenital heart defect can contribute to a profound advancement of clinical diagnosis and treatment. Various kinds of animal models simulating cyanotic heart diseases have been created and improved step by step , such as experimental pulmonary arteriovenous fistulas, inferior vena cava-left atrium shunt, pulmonary artery-left atrium shunt and breeding animals in mionect ic environment. As an important means, they are used to investigate the animal’s pathophysilolgocal characteristics in cyanotic and hypoxic state. However, it need a further exploration since these models are not fully perfect yet.
ObjectiveTo compare the anti-apoptotic potency of human mesenchymal stem cells (hMSCs) derived from patients with cyanotic congenital heart diseases (C-CHD) or acyanotic congenital heart diseases (A-CHD) in vitro and explore the possible mechanism. MethodshMSCs were isolated from patients with cyanotic (Group C) or acyanotic (Group A) congenital heart diseases and cultured in a hypoxic incubator (1% O2, 5% CO2, 94% N2) in vitro. The anti-apoptotic potency of the hMSCs was assayed by the Annexin V-FITC/PI double labeled flow cytometry. The content of B-cell lymphoma-2 (Bcl-2), Bax and caspase-3 in both groups was determined by Western blot. ResultsFlow cytometry results revealed that hMSCs from C-CHD patients presented higher level of resistance to ischemia-and anoxia-induced apoptosis with lower overall (P<0.05) and early apoptosis ratio (P<0.01). Further Western blot examination identified that C-CHD-derived hMSCs produced more Bcl-2 (P<0.05) but less Bax (P<0.05) and caspase-3 (P<0.05) in comparison to their A-CHD-derived ones. ConclusionC-CHD-derived hMSCs presented the superiority for the anti-apoptotic potential, and the possible mechanism is the favorable change of Bcl-2, Bax and caspase-3 induced by the natural hypoxic and anoxic precondition.
ObjectiveTo identify the risk factors of postoperative blood loss among pediatric patients following corrective operation of tetralogy of Fallot (TOF) and to develop nomogram predicting the risk of postoperative blood loss.MethodsA retrospective case-control study was conducted in pediatric TOF patients who underwent corrective operation in our hospital from November 2018 to June 2019. And the clinical data from each enrolled patient were gathered and analyzed. Clinically significant postoperative blood loss was defined as drainage volume from chest tube ≥16 mL/kg during the first 24 h after surgery, which corresponded to the 75th percentile of the blood loss in our population. The primary outcome was to determine the independent predictors of postoperative blood loss by the least absolute shrinkage and selection operator (LASSO) regression, univariate and multivariate logistic regression analysis. On the basis of the independent predictors of postoperative bleeding, nomogram was developed and its discrimination and calibration were estimated.ResultsA total of 105 children were selected (67 males and 38 females aged 3-72 months). The drainage volume from chest tube in the bleeding group was significantly higher than that in the non-bleeding group during the first 24 h (P<0.0001). Multivariate logistic regression analysis showed that low body weight (OR=0.538, 95%CI 0.369-0.787, P=0.001), high preoperative hemoglobin concentration (OR=1.036, 95%CI 1.008-1.066, P=0.013) and prolonged intraoperative aortic cross clamp time (OR=1.022, 95%CI 1.000-1.044, P=0.048) were independent risk factors for postoperative blood loss. In the internal validation, the model displayed good discrimination with a C-index of 0.835 (95%CI 0.745-0.926) and high quality of calibration plots in nomogram models was noticed.ConclusionThe nomogram demonstrated good discrimination and calibration in estimating the risk of postoperative blood loss among pediatric patients following corrective operation of TOF.
Objective To investigate the iron deficiency (ID) in children with congenital heart disease (CHD) and find high risk factors of ID. Methods The clinical data of 227 pediatric patients with CHD from February to June 2016 were retrospectively analyzed. The incidence of ID according to the result of iron metabolism examination (serum ferritin <12 μg/L as the diagnostic criteria) was investigated. According to their basic CHD types, patients were divided into a cyanotic group and an acyanotic group. We tried to find the high risk factors of ID in those pediatric CHD patients by comparing their age, gender, growth condition and blood routine test results. Results There were 19.8% pediatric CHD patients complicated by ID. The incidence of ID in the cyanotic patients was higher than that in the acyanotic patients (31.0% vs. 17.3%, P=0.045). In both groups, ID patients presented the characteristics of younger age, higher anemia rate, lower mean corpuscular volume (MCV), lower mean corpuscular hemoglobin (MCH), lower mean corpuscular-hemoglobin concentration (MCHC) and longer red blood cell distribution width (RDW). Conclusion Cyanosis, younger age (infant), anemia, decreased MCV, decreased MCH, decreased MCHC and increased RDW are high risk factors of ID in CHD children.