west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "纳米羟基磷灰石" 21 results
  • CATIONIC LIPOSOME CEFTAZIDIME COMBINED WITH NANO-HYDROXYAPATITE/β-TRICALCIUM PHOSPHATE FOR TREATMENT OF CHRONIC OSTEOMYELITIS OF RABBITS

    Objective To observe the effect of cationic liposomal ceftazidime (CLC) combined with nano-hydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) in the treatment of chronic osteomyelitis of rabbits. Methods Thirty healthy New Zealand white rabbits (4-6 months old; weighing, 2-3 kg) were selected to prepare the chronic osteomyelitis models. After 4 weeks, the gross observation, X-ray examination, and bacteriological and histopathological examinations were done; the models were made successfully in 27 rabbits. Of 27 rabbits, 24 were randomly divided into 4 groups (n=6): only debridement was performed in group A; ceftazidime was given (90 mg/kg), twice a day for 8 weeks after debridement in group B; ceftazidime and n-HA/β-TC were implanted after debridement in group C; and CLC and n-HA/β-TCP were implanted after debridement in group D. Before and after treatments, X-ray examination was done, and Norden score was recorded. At 8 weeks after treatment, the specimens were harvested for gross observation and for gross bone pathological score (GBPS) using Rissing standard; half of the specimens was used for histological observation and Smeltzer scoring, the other half for bacteriological examination and calculation of the positive rate of bacteria culture. Results At 8 weeks after treatment, Norden score of group D was significantly lower than that of groups A, B, and C (P lt; 0.05), but no significant difference was found among groups A, B, and C (P gt; 0.05). At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the GBPS scores of groups C and D were significantly lower than those of groups A and B (P lt; 0.05). The Smeltzer scores of groups C and D were significantly lower than those of groups A and B (P lt; 0.05). The positive rates of bacteria culture of groups C (0) and D (0) were significantly lower than those of group A (25.0%) and group B (16.7%) (P lt; 0.05). Conclusion CLC combined with n-HA/β-TCP has good effect in treating chronic osteomyelitis of rabbits, and it has better effect in treating chronic osteomyelitis of rabbits than ceftazidime with n-HA/β-TCP.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • NOVEL ARTIFICIAL LAMINA FOR PREVENTION OF EPIDURAL ADHESIONS AFTER POSTERIOR CERVICAL LAMINECTOMY

    Objective To evaluate the application of artificial lamina of multi-amino-acid copolymer (MAACP)/nano-hydroxyapatite (n-HA) in prevention of epidural adhesion and compression of scar tissue after posterior cervical laminectomy. Methods Fifteen 2-year-old male goats [weighing, (30 ± 2) kg] were randomly divided into experimental group (n=9) and control group (n=6). In the experimental group, C4 laminectomy was performed, followed by MAACP/n-HA artificial lamina implantations; in the control group, only C4 laminectomy was performed. At 4, 12, and 24 weeks after operation, 2, 2, and 5 goats in the experimental group and 2, 2, and 2 goats in the control group were selected for observation of wound infection, artificial laminar fragmentation and displacement, and its shape; Rydell’s degree of adhesion criteria was used to evaluate the adhesion degree between 2 groups. X-ray and CT images were observed; at 24 weeks after operation, CT scan was used to measure the spinal canal area and the sagittal diameter of C3, C4, and C5 vertebrea, 2 normal goats served as normal group; and MRI was used to assess adhesion and compression of scar tissue on the dura and the nerve root. Then goats were sacrificed and histological observation was carried out. Results After operation, the wound healed well; no toxicity or elimination reaction was observed. According to Rydell’s degree of adhesion criteria, adhesion in the experimental group was significantly slighter than that in the control group (Z= — 2.52, P=0.00). X-ray and CT scan showed that no dislocation of artificial lamina occurred, new cervical bone formed in the defect, and bony spinal canal was rebuilt in the experimental group. Defects of C4 vertebral plate and spinous process were observed in the control group. At 24 weeks, the spinal canal area and sagittal diameter of C4 in the experimental group and normal group were significantly larger than those in the control group (P lt; 0.05), but no significant difference was found between experimental group and normal group (P gt; 0.05). MRI showed cerebrospinal fluid signal was unobstructed and no soft tissue projected into the spinal canal in the experimental group; scar tissue projected into the spinal canal and the dura were compressed by scar tissue in the control group. HE staining and Masson trichrome staining showed that artificial lamina had no obvious degradation with high integrity, some new bone formed at interface between the artificial material and bone in the experimental group; fibrous tissue grew into defect in the control group. Conclusion The MAACP/n-HA artificial lamina could maintaine good biomechanical properties for a long time in vivo and could effectively prevent the epidural scar from growing in the lamina defect area.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • MID-TERM EFFECTIVENESS OF ANTERIOR DECOMPRESSION AND FUSION WITH NANO-HYDROXYAPATITE/POLYAMIDE 66 CAGE IN TREATMENT OF CERVICAL SPONDYLOTIC MYELOPATHY

    Objective To assess the mid-term effectiveness of anterior decompression and fusion with nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage in treatment of cervical spondylotic myelopathy. Methods A retrospective study was made on 48 patients with cervical spondylotic myelopathy who underwent anterior decompression and fusion with n-HA/PA66 cage between August 2008 and January 2010. There were 33 males and 15 females with an average age of 54.5 years (range, 42-72 years). The disease duration was 3-12 months (mean, 6 months). The affected segments included 35 cases of single segment (C3, 4 in 7, C4, 5 in 18, and C5, 6 in 10) and 13 cases of double segments (C3-5 in 7 and C4-6 in 6). Of 48 patients, 28 was diagnosed as having intervertebral disc protrusion, 12 as having ossification of posterior longitudinal ligament, and 8 as having vertebral osteophyte; 35 patients underwent single segmental anterior corpectomy and fusion, and 13 patients underwent single segmental anterior discectomy and fusion. The pre- and post-operative radiographs (cervical anteroposterior and lateral X-ray films and three-dimensional CT scans) were taken to measure the segmental height and lordosis angle. Brantigan et al assessment standard and visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) scores were used to evaluate the graft fusion and the improvement of clinical symptoms, respectively. Results All patients were followed up for 46 months on average (range, 36-54 months). No cage breaking, displacement, or sliding was found. At last follow-up, 36 cases were rated as Brantigan grade E, 10 cases as grade D, and 2 cases as grade C; the fusion rate was 96%. Both segmental height and lordosis angle were corrected significantly at immediate and 6 months after operation and last follow-up than those before operation (P lt; 0.05), but no significant difference was found among different time points after operation (P gt; 0.05). At last follow-up, the cage subsidence was (1.3 ± 1.0) mm. The VAS and JOA scores at 6 months after operation and last follow-up were significantly improved when compared with preoperative scores (P lt; 0.05), and the scores at last follow-up were superior to ones at 6 months after operation (P lt; 0.05). Conclusion The mid-term effectiveness of anterior decompression and fusion with the n-HA/PA66 cage in patients with cervical spondylotic myelopathy is satisfactory because it can effectively restore and maintain segmental height and lordosis angle and promote osseous fusion.

    Release date:2016-08-31 04:12 Export PDF Favorites Scan
  • VANCOMYCIN CATIONIC LIPOSOME COMBINED WITH NANO-HYDROXYAPATITE/CHITOSAN/KONJACGLUCOMANNAN SCAFFOLD FOR TREATMENT OF INFECTED BONE DEFECTS IN RABBITS

    【Abstract】 Objective To investigate the anti-infection and bone repair effects of cationic l i posome-encapsulatedvancomycin combined with the nano-hydroxyapatite/chitosan/konjac glucomannan (n-HA/CS/KGM) composite scaffold invivo. Methods Fifty-one 6-month-old New Zealand white rabbits, weighing 1.5-3.0 kg, were selected to prepare chronicinfectious tibia bone defect model by using Staphylococcus aureus. After 4 weeks, 48 survival rabbits were randomly divided into 4 groups (n=12). After debridement, defect was treated with nothing in group A, with n-HA/CS/KGM composite scaffold in group B, with vancomycin and n-HA/CS/KGM composite scaffold in group C, and with cationic l i posome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold in group D. After 8 weeks of treatment, general observation, X-ray, HE staining, the bacterial culture, and the measurement of the longest diameter of bone defect were done. Results At 4 weeks after modeling, 48 rabbits were diagnosed as having osteomyelitis, including periosteal new bone formation, destruction of bone, and soft tissue swell ing. The Norden score was 3.83 ± 0.52. At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the gross bone pathologieal scores of group D were significantly better than those of groups A and B (P lt; 0.05). Bone defects were repaired completely in group D, the results of the longest diameter of bone defects in group D was significantly better than those in the other 3 groups (P lt; 0.05). New bone formation was observed in groups C and D, but periosteal reactionand marrow low-density shadow were observed in groups A and B; Norden score in group D was significantly better than those in groups A, B, and C (P lt; 0.05). HE staining showed that there were a large number of trabecular bone formation and fibrosis, with no obvious signs of infection in groups C and D, but neutrophil accumulation was observed in groups A and B; Smeltzer scores in groups C and D were significantly better than those in groups A and B (P lt; 0.05). Bacteriological results showed higher negative rate in groups C and D than in groups A and B (P lt; 0.05). Conclusion Cationic l iposome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold can be a good treatment for infectious bone defects in rabbits, providing a new strategy for the therapy of bone defects in chronic infection.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • SHORT-TERM EFFECTIVENESS OF NANO-HYDROXYAPATITE/POLYAMIDE-66 INTERVERTEBRAL CAGE FOR LUMBAR INTERBODY FUSION IN PATIENTS WITH LOWER LUMBAR DEGENERATIVE DISEASES

    Objective To evaluate the short-term effectiveness of nano-hydroxyapatite/polyamide-66 (n-HA/PA66) intervertebral cage for lumbar interbody fusion in the patients with lower lumbar degenerative diseases. Methods Between January and October 2011, 20 patients with lower lumbar degenerative diseases underwent transforaminal lumbar interbody fusion with n-HA/PA66 intervertebral cage. There were 8 males and 12 females, aged 22-80 years (mean, 51 years). The disease duration was 1 to 24 months (mean, 4 months). L4, 5 fusion was performed in 8 cases, L5, S1 fusion in 9 cases, and L4-S1 fusion in 3 cases. Among 20 cases, 3 were diagnosed as having recurrent lumbar disc protrusion, 5 as having lumbar degenerative spondylolisthesis, 9 as having lumbar isthmic spondylolisthesis, and 3 as having lumbar spinal stenosis. The intervertebral height and lordosis were measured on X-ray film to assess the surgical correction and postoperative sustain while osseous fusion was observed on 3-dimensional CT. The Oswestry disability index (ODI) and short-form 36 health survey scale (SF-36) scores were obtained to assess the status of clinical recovery. Results All patients had incision healing by first intention. The pain and numb were relieved in varying degrees after operation. No cerebrospinal leakage, nerve root injury, or wound infection was occurred. All patients were followed up 6-9 months (mean, 7 months). No cage displacement or collapse was found. The intervertebral height and lordosis of single fusion segment were significantly improved at 3 days and 3, 6 months after operation when compared with those at preoperation (P lt; 0.01); there was no significant difference among each time point after operation (P gt; 0.05). The fusion rate was 74% at 3 months after operation and 96% at 6 months after operation, with an average of 4 months (range, 3-9 months) for interbody fusion. The ODI and SF-36 scores were significantly improved at 3 days and 6 months after operation when compared with the scores at preoperation (P lt; 0.01); there was no significant difference among each time point after operation (P gt; 0.05). Conclusion The interbody fusion with n-HA/PA intervertebral cage is effective and safe to treat the lower lumbar degenerative diseases. The n-HA/PA66 intervertebral cage is an ideal device of interbody fusion with high fusion rate, low subsidence rate, and high transmission X-ray, but the long-term effectiveness need further observation.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF A NOVEL BIOMIMETIC OSTEOCHONDRAL SCAFFOLD: COLLAGEN-CHITOSAN/NANO-HYDROXYAPATITE-COLLAGEN-POLYLACTIC ACID

    Objective To prepare collagen-chitosan /nano-hydroxyapatite-collagen-polylactic acid (Col-CS/ nHAC-PLA) biomimetic scaffold and to examine its biocompatibility so as to lay the foundation for its application on the treatment of osteochondral defect. Methods PLA was dissolved in dioxane for getting final concentration of 8%, and the nHAC power was added at a weight ratio of nHAC to PLA, 1 ∶ 1. The solution was poured into a mold and frozen. CS and Col were dissolved in 2% acetum for getting the final concentrations of 2% and 1% respectively, then compounded at a weight ratio of CS to Col, 20 ∶ 1. The solution was poured into the frozen mold containing nHAC-PLA, and then biomimetic osteochondral scaffold of Col-CS/nHAC-PLA was prepared by freeze-drying. Acute systemic toxicity test, intracutaneous stimulation test, pyrogen test, hemolysis test, cytotoxicity test, and bone implant test were performed to evaluate its biocompatibility. Results Col-CS/nHAC-PLA had no acute systemic toxicity. Primary irritation index was 0, indicating that Col-CS/nHAC-PLA had very slight skin irritation. In pyrogen test, the increasing temperature of each rabbit was less than 0.6℃, and the increasing temperature sum of 3 rabbits was less than 1.3℃, which was consistent with the evaluation criteria. Hemolytic rate of Col-CS/nHAC-PLA was 1.38% (far less than 5%). The toxicity grade of Col-CS/nHAC-PLA was classified as grade I. Bone implant test showed that Col-CS/nHAC-PLA had good biocompatibility with the surrounding tissue. Conclusion Col-CS/ nHAC-PLA scaffold has good biocompatibility, which can be used as an alternative osteochondral scaffold.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • APPLICATION OF NANO-HYDROXYAPATITE/POLYAMIDE 66 CAGE IN RECONSTRUCTION OF SPINAL STABILITY AFTER RESECTION OF SPINAL TUMOR

    Objective To evaluate the security and effectiveness of nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage in reconstruction of spinal stabil ity after resection of spinal tumor. Methods Between January 2008 and December2009, 11 patients with spinal tumor underwent surgical resection and strut graft with n-HA/PA66 cage. There were 6 males and 5 females with an average age of 44.5 years (range, 16-61 years). The average disease duration was 6.8 months (range, 2-14 months). The locations of lesions included cervical spine (2 cases), thoracic spine (6 cases), and lumbar spine (3 cases). Among them, there were 5 metastatic carcinomas, 2 giant cell tumors, 1 osteoblastsarcoma, 1 chondrosarcoma, and 2 non-Hodgkin lymphoma. According to Frankel criteria for nerve function classification, there were 1 case of grade A, 3 cases of grade B, 2 cases of grade C, 2 cases of grade D, and 3 cases of grade E. Results Incisions healed by first intention in all patients, no operative or postoperative compl ication occurred. Four cases of metastatic carcinoma died of primary disease during 5-9 months after operation. Seven cases were followed up 14.4 months on average (range, 10-18 months). All patients gained significant improvement of the neurological function at 3 months after operation. All cases obtained bone fusion and good spinal stabil ity without displacement and subsidence of the n-HA/PA66 cage. The intervertebral height of the adjacent segments was (110.5 ± 16.1) mm at 3 months after operation and (109.4 ± 16.2 ) mm at the final follow-up, showing significant differenecs when compared with the preoperative height [(97.5 ± 15.4) mm, P lt; 0.05], but no significant difference between 3 months after operation and the final follow-up. In 2 patients undergoing surgery via anterior approach, bilateral pleural effusion on both sides occurred and were cured after closed thoracic drainage. During the follow-up, 2 cases (1 chondrosarcoma and 1 giant cell tumor) relapsed and underwent reoperations. Conclusion n-HA/PA66 cage can provide satisfactory bone fusion and ideal spinal stabil ity without increasing the risk of recurrence and compl ications during the surgical treatment of spinal tumors. It is an idealselection for reconstruction of spinal stability.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • Application of Artificial Vertebral Body of Biomimetic NanoHydroxyapatite/Polyamide 66 Composite In Anterior Surgical Treatment of Thoracolumbar Fractures

    Objective To study the clinical effects of the artificial vertebral body of the biomimetic nanohydroxyapatite/polyamide 66 (nHA/PA66) compositefor the structural reconstruction and the height restoring of the vertebral body in the thoracolumbar fractures by the anterior surgical procedures. Methods From December 2003 to January 2006, 42 patients with thoracolumbar fractures received the anterior surgical procedures to decompress and reconstruct the spinal vertebral structure with the artificial vertebral body of the nHA/PA66 composite. Among the patients, there were 28 males and 14 females, aged 1767 years, averaged 43.6 years. The thoracolumbar fractures developed at T12 in 5 patients, at L1 in 17, at L2 in 14, and at L3 in 6. The height of the anterior border of thevertebral body amounted to 29%-47% of the vertebral body height, averaged 40.6%.The Cobb angle on the sagittal plane was 2138° averaged 27.6°. According tothe Frankel grading scale, the injuries to the nerves were as the following: Grade A in 7 patients, Grade B in 19, Grade C in 8, Grade D in 6, and Grade E in 2. Results All the 42 patients were followed up for 625 months. Among the patients, 36 were reconstructed almost based on the normal anatomic structure, and 6 were well reconstructed. The mean height of the anterior border of the vertebralbody was 40.6% of the vertebral body height before operation but 91.7% after operation. And the reconstructed height of the vertebra was maintained. The mean Cobb angle on the sagittal plane was 27.6°before operation but 13.4° after operation. All the patients had a recovery of the neurological function that had a 1grade or 2grade improvement except 7 patients who were still in Grade A and 2 patients who were in Grade D. The implant was fused 35 months after operation. No infection, nail break, bar/plate break or loosening of the internal fixation occurred. Conclusion The artificial vertebral body of the biomimetic nHA/PA66 composite can effectively restore the height and the structure of the vertebra, can be fused with the vertebral body to reconstruct the spinal structural stability effectively, and can be extensively used in the clinical practice.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • STUDY ON REPAIR OF CRITICAL CALVARIAL DEFECTS WITH NANOHYDROXYAPATITE/COLLAGEN/POLYLACTIC ACID MATERIAL COMPOUNDED RECOMBINANT HUMANBONE MORPHOGENETIC PROTEIN 2 IN RABBITS

    Objective To investigate the effect of tissue engineering bone compounded in vitro by nanohydroxyapatite/collagen/ polylactic acid (nHAC/PLA) and recombinant human bone morphogenetic protein 2 (rhBMP-2) in repairing rabbit critical calvarial defects. Methods Forty eight New Zealand rabbits, weighting 2.0-2.5 kg, were made the models of critical cranial defects(15 mm in diameter) and divided into 4 groups randomly. Defects were repaired with autoflank bone in the positive control group; with no implant in the blank control group; with nHAC/PLA in the negative control; and with active nHAC/PLA(AnHAC/PLA) in the experimental group(the average quality of each AnHAC/PLA absorbed rhBMP-2 was 1.431 mg). The reapir results were observed through X-ray,HE dyeing and Masson’s trichrism dyeing after 8 and 16 weeks. Results The difference of bone formation was observed by X-ray block degree of skull defect area at 8 and 16 weeks. In the 8 th week and 16 th week, the radiopacities on cranial defect were 67.21%±2.06% and 86.48%±1.73% in the positive control group; 5.84%±1.92% and 9.48%±2.72% in the blank control group; 19.13%±2.51% and 35.67%±3.28% in the negative control group; and 58.84%±2.55% and 8561%±3.36% in the experimental group. There were significant differences between the negative control and the positive control group, and between the experimental group and the positive control group at 8 weeks(Plt;0.05) . There were significant differences between the negative control and blank group, and between the experiment and the blank group at 8 and 16 weeks(P<0.05). The histology observation showed that the width of bone trabecula at 16 weeks was more than that at 8 weeks and bone defectwas full of bone tissue in positive control group. The bone defect was full of fibrous tissue at 8 and 16 weeks, and there was no new bone in the blank group. The bone defect was full of remnant material and fibrous tissue in the negative control group. The implanted area was replaced by the new bone at 8 weeks and the new bone was lamellar at 16 weeks in the experimental group; the residual material was less in defect area and there were more osteoblasts surrounding. Conclusion The nHAC/PLA is a good scaffoldmaterial of rhBMP-2 and AnHAC/PLA has agood ability in repairing bone defect. So it is hopeful to be applied in the clnical repair of large bone defect.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • A STUDY ON NANOHYDROXYAPATITECHITOSAN SCAFFOLD FOR BONE TISSUE ENGINEERING

    Objective To fabricate a nanohydroxyapatite-chitosan(nano-HA-CS) scaffold with high porosity by a simple and effective technique and to evaluate the physical and chemical properties and the cytocompatibility of the composite scaffold. Methods The threedimensional nano-HA-CS scaffolds with high porosity were prepared by the in situ hybridization-freeze-drying method. The microscopic morphology and components of the composite scaffolds were analyzed by the scanning electron microscopy (SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD)examination, and the Fourier transformed infrared spectroscopy(FTIR). The calvarial osteoblasts were isolated from the neonatal Wistar rats. The serial subcultured cells (3rd passage) were respectively seeded onto the nanoHACS scaffold and the CS scaffold, and then were cocultured for 2, 4, 6 and 8 hours. At each time point,four specimens from each matrix were taken to determine the celladhesion rate. The cell morphology was observed by the histological staining and SEM. Results The macroporous nanoHACS scaffolds had a feature of high porosity with a pore diameter from 100 to 500 μm (mostly 400500 μm). The scaffolds had a high interval porosity; however, the interval porosity was obviously decreased and the scaffold density was increased with an increase in the contents of CS and HA. The SEM and TEM results showed that the nanosized HA was synthesized and was distributed on the pore walls homogeneously and continuously. The XRD and FTIR results showed that the HA crystals were carbonatesubstituded and not wellcrystallized. The cytocompatibility test showed that the seeded osteoblasts could adhere the scaffolds, proliferating and producing the extracellular matrix on the scaffolds. The adherence rate for the nanoHACS scaffolds was obviously higher than that for the pure CS scaffolds. Conclusion The nano-HA-CS scaffolds fabricated by the in situ hybridization-freeze-drying method have a good physical and chemical properties and a good cytocompatibility; therefore, this kind of scaffolds may be successfully used in the bone tissue engineering.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content