west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "细胞自噬" 7 results
  • Role of cell autophagy in peripheral nerve injury and regeneration

    Objective To review the mechanism and effects of cell autophagy in the pathophysiology changes of peripheral nerve injury. Methods The recent literature about cell autophagy in peripheral nerve injury and regeneration was extensively reviewed and summarized. Results The researches through drugs intervention and gene knockout techniques have confirmed that the Schwann cell autophagy influences the myelin degeneration, debris clearance, inflammatory cells infiltration, and axon regeneration through JNK/c-Jun pathway. To adjust autophagy process could slow down the Wallerian degeneration, maintain the integrity of injured nerve, while the effect on axon regeneration is still controversial. Conclusion The Schwann cell autophagy plays a key role in the pathophysiology changes of peripheral nerve injury, the further study of its mechanism could provide new methods for the therapy of peripheral nerve injury.

    Release date:2017-02-15 09:26 Export PDF Favorites Scan
  • Research progress on the involvement of nuclear receptor in regulating autophagy

    Nuclear receptors are transcriptional regulators involved in almost all biological processes such as cell growth, differentiation, apoptosis, substance metabolism and tumor formation, and they can be regulated by small molecules that bind to them. Autophagy is a special way of programmed cell death and it is a highly conserved metabolic process. Once autophagy defects or excessive autophagy occur, the disease will develop. In recent years, numerous studies have shown that nuclear receptors are related to autophagy. Therefore, this paper mainly reviews the research progress on nuclear receptors involved in the regulation of autophagy, and focuses on the mechanism of several nuclear receptors involved in the regulation of autophagy, aiming at understanding the molecular basis of how nuclear receptors participate in regulating autophagy, as well as providing possible ideas and strategies for the treatment of corresponding diseases.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • Advances of autophagy in erectile dysfunction

    Autophagy is a lysosome dependent, conservative material degradation process, which exists in all eukaryotic cells and plays import roles in many pathophysiology process. Erectile dysfunction (ED) is a common male disease with multiple etiology. In recent years, more and more evidences have demonstrated that autophagy has a close relation to ED, therefore, we combine previous study to classify ED by hypoxia, aging, diabetes and other causes, and review the advances of autophagy in ED.

    Release date:2019-04-22 04:14 Export PDF Favorites Scan
  • 细胞程序化死亡在癫痫发生过程中的机制研究

    癫痫是一种病因复杂且发病机制尚未明确的慢性神经系统疾病。目前,国内外对癫痫开展了大量的研究。其中有研究认为,癫痫发生后,大脑海马区出现了一些结构性的改变,这些改变就包括细胞程序化死亡。细胞程序化死亡的方式主要有四种,分别是细胞自噬、细胞凋亡、程序性坏死和细胞焦亡,这四种死亡方式有着各自的特点和相应的机制。文章就细胞程序化死亡在癫痫发生过程中的相关机制作一综述,探讨癫痫发生分别与细胞自噬、细胞凋亡、程序性坏死和细胞焦亡的关系。

    Release date:2021-04-25 09:50 Export PDF Favorites Scan
  • Research of epigallocatechin gallate in delaying chondrocyte senescence

    Objective To investigate the effect of epigallocatechin gallate (EGCG) on chondrocyte senescence and its mechanism. Methods The chondrocytes were isolated from the articular cartilage of 4-week-old Sprague Dawley rats, and cultured with type Ⅱcollagenase and passaged. The cells were identified by toluidine blue staining, alcian blue staining, and immunocytochemical staining for type Ⅱ collagen. The second passage (P2) cells were divided into blank control group, 10 ng/mL IL-1β group, and 6.25, 12.5, 25.0, 50.0, 100.0, and 200.0 μmol/L EGCG+10 ng/mL IL-1β group. The chondrocyte activity was measured with cell counting kit 8 after 24 hours of corresponding culture, and the optimal drug concentration of EGCG was selected for the subsequent experiment. The P2 chondrocytes were further divided into blank control group (group A), 10 ng/mL IL-1β group (group B), EGCG+10 ng/mL IL-1β group (group C), and EGCG+10 ng/mL IL-1β+5 mmol/L 3-methyladenine (3-MA) group (group D). After cultured, the degree of cell senescence was detected by β-galactosidase staining, the autophagy by monodansylcadaverine method, and the expression levels of chondrocyte-related genes [type Ⅱ collagen, matrix metalloproteinase 3 (MMP-3), MMP-13] by real-time fluorescent quantitative PCR, the expression levels of chondrocyte-related proteins (Beclin-1, LC3, MMP-3, MMP-13, type Ⅱ collagen, P16, mTOR, AKT) by Western blot. Results The cultured cells were identified as chondrocytes. Compared with the blank control group, the cell activity of 10 ng/mL IL-1β group significantly decreased (P<0.05). Compared with the 10 ng/mL IL-1β group, the cell activity of EGCG+10 ng/mL IL-1β groups increased, and the 50.0, 100.0, and 200.0 μmol/L EGCG significantly promoted the activity of chondrocytes (P<0.05). The 100.0 μmol/L EGCG was selected for subsequent experiments. Compared with group A, the cells in group B showed senescence changes. Compared with group B, the senescence rate of chondrocytes in group C decreased, autophagy increased, the relative expression of type Ⅱ collagen mRNA increased, and relative expressions of MMP-3 and MMP-13 mRNAs decreased; the relative expressions of Beclin-1, LC3, and type Ⅱ collagen proteins increased, but the relative expressions of P16, MMP-3, MMP-13, mTOR, and AKT proteins decreased; the above differences were significant (P<0.05). Compared with group C, when 3-MA was added in group D, the senescence rate of chondrocytes increased, autophagy decreased, and the relative expressions of the target proteins and mRNAs showed an opposite trend (P<0.05). ConclusionEGCG regulates the autophagy of chondrocytes through the PI3K/AKT/mTOR signaling pathway and exerts anti-senescence effects.

    Release date: Export PDF Favorites Scan
  • Research progress on the mechanism and therapeutic targets of brain injury caused by status epilepticus

    Epilepsy is one of the most common neurological disorders, and status epilepticus (SE) can lead to permanent neuronal brain damage in the central nervous system, but the mechanism is not clear. Solving this problem will help to find more SE therapeutic targets, benefiting tens of millions of epilepsy patients. The pathway of SE leading to neuronal damage in the brain has made new progress in neuroinflammation, autophagy, apoptosis and pyroptosis, glial cell hyperplasia and category transformation, and changes in neurotransmitters in the brain, which will be beneficial to the discovery of new targets for the treatment of SE, thus laying a foundation for the development of new anti-epileptic drugs.

    Release date: Export PDF Favorites Scan
  • Research progress on the bidirectional effect of autophagy on retinal neurovascular unit cells in diabetic retinopathy

    Diabetes retinopathy (DR) is a blinding ocular complication of diabetes, and its pathological mechanism is complex. The damage to the retinal neurovascular unit (NVU) and the imbalance of its coupling mechanism are important pathological foundations. Autophagy plays an important role in the progression of DR. Oxidative stress, endoplasmic reticulum stress, hypoxia, and competitive endogenous RNA regulatory networks can affect the occurrence of autophagy, and autophagy induced cell death is crucial in NVU dysfunction. Retinal neurocyte are non- renewable cells, and adaptive autophagy targeting neuronal cells may provide a new direction for early vision rescue in patients with DR. It is necessary that exploring the possible autophagy interrelationships between ganglion cells, glial cells, and vascular constituent cells, searching for targeted specific cell autophagy inhibitors or activators, and exploring the impact of autophagy on the NVU complex more comprehensively at the overall level. Adopting different autophagy intervention methods at different stages of DR may be one promising research directions for future DR.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content