ObjectiveTo systematically review the efficacy of different stimulation modalities of repetitive transcranial magnetic stimulation (rTMS) combined with SSRI in improving depressed mood after stroke using network meta-analysis. MethodsThe PubMed, EMbase, Cochrane Library, Web of Science, CNKI, VIP, CBM and WanFang Data databases were electronically searched to collect randomized controlled trials (RCTs) related to the objectives from inception to October 1, 2022. Two reviewers independently screened literature, extracted data and assessed the risk of bias of the included studies. Network meta-analysis was then performed by using R 4.2.1software. ResultsA total of 25 RCTs involving 2 152 patients were included. Four types of rTMS stimulation combined with SSRIs were included: high-frequency stimulation of the left dorsolateral prefrontal (l-DLPFC), low-frequency stimulation of l-DLPFC, low-frequency stimulation of the right dorsolateral prefrontal (r-DLPFC), and low-frequency stimulation of the bilateral DLPFC. The results of the network meta-analysis showed that the effect of combining four stimulation methods with SSRI in treating depression was better than that of SSRI alone (P<0.05). Probability sorting results showed that low-frequency stimulated bilateral DLPFC (88.9%) > low-frequency stimulated l-DLPFC (63.1%) > high-frequency stimulation l-DLPFC (57.1%) > low-frequency stimulation r-DLPFC (40.4%). There was no statistically significant difference in the incidence of adverse reactions between the four stimulation methods combined with SSRI and the use of SSRI alone (P>0.05). Conclusion rTMS combined with SSRIs is better than SSRIs alone in improving depressed mood after stroke. Low-frequency rTMS stimulation of bilateral DLPFC may be the best. Meanwhile, the safety of different stimulation methods is good.
ObjectivesTo systematically review the efficacy of repetitive transcranial magnetic stimulation (rTMS) on rehabilitation of unilateral neglect in stroke patients.MethodsPubMed, The Cochrane Library, PEDro, EMbase, CNKI, WanFang Data and VIP databases were searched online for randomized controlled trials (RCTs) of rTMS on rehabilitation of unilateral neglect in stroke patients from inception to March 2017. Two reviewers independently screened literature, extracted data and assessed the quality of included studies. Meta-analysis was then performed by using RevMan 5.3 software.ResultsA total of 12 RCTs involving 303 patients were included. The results of meta-analysis showed that: the stimulate group was superior to the control group in line bisection test (MD=–5.54, 95%CI –6.79 to –4.29, P<0.000 01), line cancellation test (MD=–3.75, 95%CI –4.60 to –2.90,P<0.000 1) and star cancellation test (MD=–22.94, 95%CI –26.52 to –19.35,P<0.000 01). However, there was no significant difference in the score of the modified Barthel index between two groups (MD=3.91, 95%CI–9.52 to 17.34,P=0.57).ConclusionsrTMS appears to improve the symptoms of unilateral neglect in stroke patients. Due to limited quality and quantity of the included studies, more high quality studies are needed to verify above conclusions.
ObjectiveTo observe the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) applied at contralesional hemisphere Broca’s homologue on patients with global aphasia after left massive cerebral infarction. Methods Patients with global aphasia after left massive cerebral infarction in the Department of Neurorehabilitation of China Rehabilitation Research Center between August 2021 and December 2023 were selected. According to the random number table method, patients were randomly divided into a low-frequency rTMS group and a high-frequency rTMS group. rTMS targeted the mirror area within the right hemispheric Broca’s area. Patients’ language ability was assessed pre- and post-treatment by the Chinese version of the western aphasia battery (WAB). Results A total of 27 patients were included, with 14 in the low-frequency rTMS group and 13 in the high-frequency rTMS group. Before treatment, there was no statistically significant difference in the WAB test indicators between the two groups of patients (P>0.05). After treatment, WAB scores (spontaneous speech, auditory comprehension, naming, repetition, aphasia quotients) in both groups were significantly improved (P<0.05); compared to the low-frequency rTMS group, the high-frequency rTMS group exhibited significant improvement in spontaneous speech, auditory comprehension, repetition, naming and aphasia quotients (P<0.05). Conclusion The effect of high-frequency rTMS excitation to contralesional hemisphere is better than that of conventional low-frequency rTMS inhibition to contralesional hemisphere in improving the speech function of patients with global aphasia after left massive cerebral infarction.
In transcranial magnetic stimulation (TMS), the conductivity of brain tissue is obtained by using diffusion tensor imaging (DTI) data processing. However, the specific impact of different processing methods on the induced electric field in the tissue has not been thoroughly studied. In this paper, we first used magnetic resonance image (MRI) data to create a three-dimensional head model, and then estimated the conductivity of gray matter (GM) and white matter (WM) using four conductivity models, namely scalar (SC), direct mapping (DM), volume normalization (VN) and average conductivity (MC), respectively. Isotropic empirical conductivity values were used for the conductivity of other tissues such as the scalp, skull, and cerebrospinal fluid (CSF), and then the TMS simulations were performed when the coil was parallel and perpendicular to the gyrus of the target. When the coil was perpendicular to the gyrus where the target was located, it was easy to get the maximum electric field in the head model. The maximum electric field in the DM model was 45.66% higher than that in the SC model. The results showed that the conductivity component along the electric field direction of which conductivity model was smaller in TMS, the induced electric field in the corresponding domain corresponding to the conductivity model was larger. This study has guiding significance for TMS precise stimulation.
In recent years, the ongoing development of transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) has demonstrated significant potential in the treatment and rehabilitation of various brain diseases. In particular, the combined application of TES and TMS has shown considerable clinical value due to their potential synergistic effects. This paper first systematically reviews the mechanisms underlying TES and TMS, highlighting their respective advantages and limitations. Subsequently, the potential mechanisms of transcranial electromagnetic combined stimulation are explored, with a particular focus on three combined stimulation protocols: Repetitive TMS (rTMS) with transcranial direct current stimulation (tDCS), rTMS with transcranial alternating current stimulation (tACS), and theta burst TMS (TBS) with tACS, as well as their clinical applications in brain diseases. Finally, the paper analyzes the key challenges in transcranial electromagnetic combined stimulation research and outlines its future development directions. The aim of this paper is to provide a reference for the optimization and application of transcranial electromagnetic combined stimulation schemes in the treatment and rehabilitation of brain diseases.
Non-invasive brain stimulation is a technology that uses magnetic field or electric field to act on the brain to adjust the activity of cerebral cortex neurons. It mainly includes transcranial magnetic stimulation and transcranial direct current stimulation. The principle is to accelerate the induction of neuroplasticity by changing the excitability of the cerebral cortex. The characteristics are noninvasive, safe and that the patient can tolerate it. This article mainly introduces the theoretical foundation and mechanisms of non-invasive brain stimulation, and its application and safety in stroke complications, neuropathic pain and epilepsy, and discusses the commonly used treatment regimens of non-invasive brain stimulation in different neurological diseases, in order to provide possible treatment reference for the rehabilitation of neurological diseases.
Transcranial magnetic stimulation (TMS) combined with electroencephalography(EEG) has become an important tool in brain research. However, it is difficult to remove the large artifacts in EEG signals caused by the online TMS intervention. In this paper, we summed up various types of artifacts. After introducing a variety of online methods, the paper emphasized on offline approaches, such as subtraction, principal component analysis and independent component analysis, which can remove or minimize TMS-induced artifacts according to their different characteristics. Although these approaches can deal with most of the artifacts induced by TMS, the removal of large artifacts still needs to be improved. This paper systematically summarizes the effective methods for artifacts removal in TMS-EEG studies. It is a good reference for TMS-EEG researchers while choosing the suitable artifacts removal methods.
Repetitive transcranial magnetic stimulation (rTMS) can influence the stimulated brain regions and other distal brain regions connecting to them. The purpose of the study is to investigate the effects of low-frequency rTMS over primary motor cortex on brain by analyzing the brain functional connectivity and coordination between brain regions. 10 healthy subjects were recruited. 1 Hz rTMS was used to stimulate primary motor cortex for 20 min. 1 min resting state electroencephalography (EEG) was collected before and after the stimulation respectively. By performing phase synchronization analysis between the EEG electrodes, the brain functional network and its properties were calculated. Signed-rank test was used for statistical analysis. The result demonstrated that the global phase synchronization in alpha frequency band was decreased significantly after low-frequency rTMS (P<0.05). The phase synchronization was down-regulated between motor cortex and ipsilateral frontal/parietal cortex, and also between contralateral parietal cortex and bilateral frontal cortex. The mean degree and global efficiency of brain functional networks in alpha frequency band were significantly decreased (P<0.05), and the mean shortest path length were significantly increased (P<0.05), which suggested the information transmission of the brain networks and its efficiency was reduced after low-frequency rTMS. This study verified the inhibition function of the low-frequency rTMS to brain activities, and demonstrated that low-frequency rTMS stimulation could affect both stimulating brain regions and distal brain regions connected to them. The findings in this study could be of guidance to clinical application of low-frequency rTMS.
Weightlessness in the space environment affects astronauts’ learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.