OBJECTIVE: To study the characteristics of, morphology histology and ultrastructure of anterior cruciate ligament(ACL) autograft and two-step cryopreserved ACL allograft after transplantation. METHODS: Sixty New Zealand rabbits and sixty Japanese rabbits were randomly divided into two groups: ACL autograft group and two-step cryopreserved ACL allograft group. Immunosuppressant were not used after transplantation. The histology and ultrastructure of the ACL of transplantation and normal knee were observed after 4 weeks and 12 weeks, respectively. RESULTS: The rate of remodeling process was faster in ACL autograft than in two-step cryopreserved ACL allograft, but there was similar remodeling process between two groups 12 weeks after transplantation. The proportions of large-diameter fibers(gt; or = 80 nm) of ACL autograft and cryopreserved ACL allograft were 6% and 24% in the 4th week, and were 0 and 2% in the 12th week, respectively. The proportions of small-diameter of fibers(lt; 80 nm) of ACL autogrft and cryopreserved ACL allograft were 94% and 76% in the 4th week, and 100% and 98% in the 12th week, respectively. Histologic incorporation in ACL autograft was similar to that in cryopreserved ACL allograft. CONCLUSION: Two-step cryopreserved bone-ACL-bone allograft were similar to bone-ACL-bone autograft cryopreserved in remodeling process and histology. The rate of remodeling process was faster in ACL autograft than in cryopreserved ACL allograft.
OBJECTIVE To search an optimal method for improving viability of cryopreserved articular cartilage. METHODS Articular cartilage which was sampled from the rabbits were randomly divided into 5 groups. Fresh cartilage was group I, other groups were frozen. Before frozen, other cartilage was exposured in 10% DMSO at 4 degrees C for 30 minutes(group II), 1 hour(group III), 2 hours (group IV), 4 hours(group V), then were stored in liquid nitrogen for 1 week. Viabilities of the chondrocytes were detected by Typan-blue staining, electron transmission microscope, and determination of incorporation 3H-TdR after the temperature returned to normal. RESULTS 1. The cells were injuried at different extent after the cartilage was frozen. In group I, survival rate of cells was 96% and incorporation of 3H-TdR was (4,953.13 +/- 583.27)%, statistic difference was significant between group I and other groups(P lt; 0.01). The microstructure of group I was normal while other groups all had damage of the organella, 2. Structures and functions of cells in group IV were best among frozen groups. Organella were less damaged than group II, III, V, survival rate of cells was 56% and incorporation of 3H-TdR was (1,139.88 +/- 146.39)%, statistic difference was significant between group IV and group II, III, V(P lt; 0.01). CONCLUSION If cartilage are exposured in 10% DMSO at 4 degrees C for 2 hours before frozen, optimal cryopreservation can be achieved.
Abstract In order to determine the fasibility of reestablishment of circulation with cryopreserved microvenous allografts (1.0~1.4mm in diameter), 40 rabbits were divided into 2 groups. In the control group, the fresh autografts were used. In the experimental group, 20 rabbitsfemoral vein segments were treated by a two-step freezing procedure. After stored in liquid nitrogen for 48 hours, the segments were implanted into the femoral veins as allografts. The histological as well as the pathological studies were performed with light and electron microscope, and its patency was determined by angiography. The results showed that the preservation of vein was generally good. The rejective response was weak. The patency rates of 1 week and 12 weeks were 90% and 85% respectively, and there was no significant difference with that of the allogenic fresh autografts (Pgt;0.05). It was suggested that clinical use of cryoperserved allogenic microvein grafts instead of fresh autografts was possible.
To observe the histology change of the insertion using different diamertrical bone tunnel in anterior cruciate l igament (ACL) reconstruction. Methods Ninety Japanese rabbits were selected, wihout female and male l imit, weighing 2.5-3.0 kg, and were randomly divided into 3 groups, 30 in each group. The ratio of transplantation l igament diameter and bone tunnel diameter was 1/1 (group A), the ratio was 1/1.5 (group B), and the ratio was 1/2 (group C). Bone tunnel observation and histology observation were carried out in the 4th, 8th and 16th weeks postoperat ively. Results Wound healed well in 3 groups. The mean time of walking functional recovery was 1.5, 2.0 and 3.5 days in groups A, B and C respectively. After 4 weeks of operation, more soft tissues at tunnel entry were observed in group A and group B than in group C; after 8 weeks of operation, there was no crevice at bone-tunnel entry of the groups A and B, there was no improvement in group C; after 16 weeks of operation, groups A and B showed the normal insertion, group C had no normal insertion. Histology observation: in groups A, B and C, bone-tunnel was filled with loose connective tissue after 4 weeks of operation; group A and group B emerged the discontinuation ACL insertion tidal l ine after 8 weeks of operation, group C had no insertion; groups A and B emerged the similarity normal ACL insertion tidal l ine structure after 16 weeks of operation, but group C had no this structure. The results of ultimate tensile strength in groups A, B and C were (75.44 ± 7.06), (91.37 ± 6.14) and (126.91 ± 4.61) N respectively at 4 weeks; the results were (74.31 ± 4.81), (88.30 ± 7.46) and (124.34±8.44) N respectively at 8 weeks; and the results were (62.20 ± 5.32), (71.53 ± 5.99) and (83.62 ± 5.69) N respectively at 16 weeks. There was no significant difference between group A and group B (P gt; 0.05), and there were significant differences between groups A, B and group C (P lt; 0.05). Conclusion In the ACL reconstruction, the ratioof transplantation l igament diameter and bone tunnel diameter being 1/1.5 will not affect the insertion outcome, but if theratio less than the l imit it will affect the insertion outcome.