Objective To review research progress of adipose tissuederived stromal cells (ADSCs).Methods The recent articles on ADSCs were extensively reviewed, and the culture and differentiation ability of ADSCs were investigated.Results A population of stem cells could be isolated from adult adipose tissue, they were processed to obtain a fibroblast-like population of cells and could be maintained in vitro for extended periods with stable population doubling. The majority of the isolated cells were mesenchymal origin, with a few pericytes,endothelial cells and smooth muscle cells. ADSCs could be induced to differentiate intomultiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic and adipogenic cells, they could also differentiate into nerve cells.Conclusion ADSCs can substitute mesenchymal stem cells and become an alternative stem cells source for tissue engineering.
Objective To investigate the possibility of theadipose tissue-derived stromal cells(ADSCs) to differentiate into the neuron-like cells and to explore a new cell source for the transplantation related to the central nervous system. Methods Adipose was digested by collagenase, cultured in the fetal bovine serum containing a medium. Trypse was used to digest the cells and the cell passage was performed. The 3rd to the 9th passage ADSCs were used to make an induction. Isobutylmethylxanthine, indomethacin, insulin, and dexamethasone were used to induce the ADSCs to differentiate into the neuron-like cells and adipocytes. Sudan black B and immunocytochemistry were used to identify the cells. Results A population of the ADSCs could be isolated from the adult human adipose tissue, they were processed to obtain a fibroblast-like population of the cells and could be maintained in vitro for an extendedperiod with the stable population doubling, and they were expanded as the undifferentiated cells in culture for more than 20 passages, which indicated their proliferative capacity. They expressed vimentin and nestin, and characteristics of the neuron precursor stem cells at an early stage of differentiation. And the majority of the ADSCs also expressed the neuron-specific enolase and βⅢ-tubulin, characteristics of the neurons. Isobutyl-methyxanthine, indomethacin, insulin, and dexamethasone induced 40%-50% of ADSCs to differentiate into adipocytes and 0.1%0.2% of ADSCs into neuron-like cells. The neuron-like cells had a complicated morphology of the neurons, and they exhibited a neuron phenotype, expressed nestin, vimentin, neuron-specific enolase and βⅢ-tubulin, but some neuron-like cells also expressed thesmooth muscle actin (SMA), and the characteristics of the smooth muscle cells; however, the neurons from the central nervous system were never reported to express this kind of protein. Therefore, the neuron-like cells from the ADSCs could be regarded as functional neurons. Conclusion Ourresults support the hypothesis that the adult adipose tissue contains the stem cells capable of differentiating into the neuron-like cells, and they can overcome their mesenchymal commitment, which represents an alternative autologous stemcell source for transplantation related to the central nervous system.
ObjectiveTo evaluate the mechanism of stromal vascular fraction (SVF) promoting angiogenesis and tissue regeneration in tissue engineering chamber. MethodsTwenty-four 6-month-old New Zealand white rabbits, male or female, weighing 2.5-2.8 kg, were selected. Thoracic dorsal arteriovenous bundle combined with collagen type I scaffold was transplanted to dorsal side, and wrapped by cylindrical hollow silicone chamber; all animals were randomly divided into the experimental group (n=12) and the control group (n=12). SVF was isolated from the back fat pads of rabbits in experimental group and labelled with DiI at 2 weeks after operation. The 1 mL cell suspension (1×106 cells/mL) and equal saline were injected into the chamber in experimental group and control group, respectively. The regenerative tissues were harvested for general observation and HE staining at 2 and 4 weeks after injection;and immunofluorescent staining was carried out in experimental group at 4 weeks. ResultsAt 2 weeks after injection, the regenerative tissue was cylindrical; obvious vessel network and incompletely degradable collagen scaffold could be seen on the surface of the new tissue in 2 groups. The volume of new tissue was (0.87±0.11) mL in experimental group, and (0.72±0.08) mL in control group at 2 weeks, showing significant difference (t=2.701, P=0.011). At 4 weeks, little collagen scaffold could be seen on the surface in control group, but no collagen scaffold in experimental group; the volume of new tissue was (0.74±0.14) mL in experimental group, and (0.64±0.10) mL in control group, showing no significant difference (t=1.424, P=0.093). HE staining showed new mature vessels at 4 weeks, but no adipose tissue or fat lobulus formed in both groups; the capillary density was significantly higher in experimental group than in control group at 2 weeks (t=6.291, P=0.000) and at 4 weeks (t=5.445, P=0.000). The immunofluorescent staining found that SVF survived and located at the edge area after 4 weeks; the expressions of CD31 and DiI were positive in some endothelial cells. ConclusionSVF can promote the angiogenesis and tissue regeneration in tissue engineering chamber, but it can not differentiate into adipocyte spontaneously without adipogenic microenvironment.
【Abstract】 Objective To explore the optimal dosage, timing and cytotoxicity of bromodeoxyuridine (BrdU) labelling for rabbit adipose-derived stromal stem cells (ADSCs) in vitro so as to confirm its feasibil ity for stem cells labell ing and tracer means. Methods Six rabbits were used in this experiment, aged 8-12 weeks, weighing 1.5-2.0 kg and neglecting their gender. 1-2 mL fat was removed, the ADSCs were isolated and cultured using the adherence method in vitro . The 3rd passage of ADSCs was incubated with BrdU at 5, 10, 15 and 20 μg/mL (groups A, B, C and D)for 12, 24, 48 and 72 hours to identify the optimal BrdU concentration and incubating time for cell labell ing. Immunohistochemistry and trypanblau strain were performed respectively to calculate the labell ing index (positive rate) and the cells’ activity for different time after BrdU labell ing. The ADSCs without BrdU labell ing were used as control (Group E). Results The main appearance of primary ADSCs was short fusiform shape, and of the 3rd passage ADSCs long fusiform shape. The 3rd passage of ADSCs could differentiate into osteoblastsand adipocytes under corresponding inductive medium. The ADSCs’ nucleus show green fluor under fluorescence microscope after labeled by the BrdU. The labell ing ratio increased in groups A, B, C and D after incubating 12 hours, the mean labell ing ratio were 30.6% ±2.3%,32.4% ±1.9%,45.8% ±1.8%,50.8% ±3.1% , respectively, and the labell ing ratio of Group E was 0. There were significant differences between groups C, D and Group A (P lt; 0.01). The labell ing ratio of groups A, B, C and D were 45.9% ±2.0%,87.9% ±3.3%,90.6% ±2.9%,91.7% ±3.2%,respectively after 24 hours and the labell ing ratio of Group E was 0. There were significant differences between groups B, C, D and Group A (P lt; 0.01). The results of all groups after incubating48 hours and 72 h ours were similar to that after incubating 24 hours. The cell counting of groups A, B, C and D were better than that of Group E, but showing no siginificant differences(P gt; 0.05). Conclusion The most appropriate time for BrdU labell ing ADSCs is 48 hours, the most appropriate concentration is 10 μg/mL. The labell ing rate is high and cytotoxicity is l ittle.
Objective To review the research status of the neovascularization of adi pose tissue engineering in the past decade so as to provide theoretical references for the development of the rapid revascularization of tissue engineered adi pose. Methods The l iterature about the revascularization of adi pose tissue engineering was extensively reviewed andanalyzed, centering on 5 elements: specificity of histological structures and blood supply, revascularization mechanism, coculture of different seed cells, modification of scaffold, and microenvironment. Results Adi pose tissue engineering offers a new solution for soft tissue defects. However, there is still the unfulfilled need in the size of engineered adipose tissue (less than 1 mL), which was determined by the degree of neovascularization in engineered tissue. Overall, rapid neovascularization in engineering tissue is a key l ink of experimental study changing into cl inical appl ication. Conclusion Providing a sufficient supply with nutrients and oxygen by means of a sufficient and rapid neovascularization will be at the heart of any attempts to obtain bigger tissue engineered adipose to meet the demand of repairing large soft tissue defect.
Objective Extracellular matrix is one of the focus researches of the adi pose tissue engineering. To investigate the appropriate method to prepare the porcine skeletal muscle acellular matrix and to evaluate the biocompatibility of the matrix. Methods The fresh skeletal muscle tissues were harvested from healthy adult porcine and were sl iced into2-3 mm thick sheets, which were treated by hypotonic-detergent method to remove the cells from the tissue. The matrix was then examined by histology, immunohistochemistry, and scanning electron microscopy. The toxic effects of the matrix were tested by MTT. Human adi pose-derived stem cells (hADSCs) were isolated from adi pose tissue donated by patients with breast cancer, and identified by morphology, flow cytometry, and differentiation abil ity. Then, hADSCs of passage 3 were seeded into the skeletal muscle acellular matrix, and cultured in the medium. The cellular behavior was assessed by calcein-AM (CA) and propidium iodide (PI) staining at 1st, 3rd, 5th, and 7th days after culturing. Results Histology, immunohistochemistry, and scanning electron microscopy showed that the muscle fibers were removed completely with the basement membrane structure; a large number of collagenous matrix presented as regular network, porous-like structure. The cytotoxicity score of the matrix was grade 1, which meant that the matrix had good cytocompatibil ity. The CA and PI staining showed the seeded hADSCs had the potential of spread and prol iferation on the matrix. Conclusion Porcine skeletal muscle acellular matrix has good biocompatibility and a potential to be used as an ideal biomaterial scaffold for adi pose tissue engineering.
ObjectiveTo summarize the isolation procedures, molecular characterization, and differentiation and vascularization capacity of adipose-derived stem cells (ADSCs), in order to discuss the potential value of ADSCs for the repairment and regeneration of adipose tissues. MethodsRelated literatures about ADSCs were retrieved to summarize the potential value of ADSCs for the repairment and regeneration of adipose tissues. ResultsAs mesenchymal stem cells, ADSCs was rich in human adipose tissues. ADSCs possessed the potential to differentiate toward a variety of cell lineages, such as adipogenic, chondrogenic, osteogenic, cardiomyogenic, myogenic, and angiogenic. Besides, its capacity of adipogenic differentiation could maintain several passages. The most importantly, ADSCs could secrete significant amounts of angiogenesis-related cytokines, such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2), which increased the angiogenesis of adipose tissue. ConclusionsADSCs play a key role in adipose tissue engineering, autologous adipose tissue grafting, and soft tissue wound repairing, which have important application prospect for breast reconstruction.
Objective To summarize the donor factors and experimental factors that affect adipogenic differentiation of adipose derived stem cells, so as to provide reference for adipogenic differentiation of adipose derived stem cells. Methods The related research literature about donor factors and experimental factors affecting adipogenic differentiation of adipose derived stem cells in recent years was extensively reviewed and summarized. Results There are a lot of donor factors and experimental factors affecting adipogenic differentiation of adipose derived stem cells, but some of the factors are still controversial, such as donor age, health status, adipose tissue of different parts, and so on. These factors need to be further studied. Conclusion The donor factors and experimental factors that affect adipogenic differentiation of adipose derived stem cells should be deeply studied and the controversial issues should be clarified to lay a solid foundation for the application of adipose derived stem cells in adipose tissue engineering.
Objective To summarize applications and research progress of common magnetic resonance imaging lipid detection techniques in abdomen and pelvis. Method The latest domestic and foreign research literatures related to the applications and research progress of common magnetic resonance imaging lipid detection techniques in the abdomen and pelvis in recent years were collected and reviewed. Results The fat-selective spectral-spatial imaging, 1H-magnetic resonance spectroscopy (1H-MRS), and Dixon & IDEAL are three main magnetic resonance imaging lipid detection techniques, and they can estimate the fat content in the normal tissues and lesions noninvasively and longitudinally, which make the ectopic fat-induced diseases’ early diagnosis, treatment and follow-up possible. Conclusion Magnetic resonance imaging lipid detection techniques have obvious clinical values in quantitative measurement of fat content, and each method gets its own advantage, especially modified Dixon, which is more convenient and accurate and shows an enormous potential in clinical practice.