Objective To study the effect of platelet lysate (PL) on chondrogenic differentiation of human umbil ical cord derived mesenchymal stem cells (hUCMSCs) in vitro. Methods Umbil ical cords were voluntarily donated by healthy mothers. The hUCMSCs were isolated by collagenase digestion and cultured in vitro. The surface markers of the cells were detected by flow cytometer. According to different components of inductive medium, the cultured hUCMSCs were divided into 3 groups: group A [H-DMEM medium, 10% fetal bovine serum (FBS), and 10%PL]; group B [H-DMEM medium, 10%FBS,10 ng/mL transforming growth factor β1 (TGF-β1), 1 × 10-7 mol/L dexamethasone, 50 μg/mL Vitamin C, and 1% insul intransferrin- selenium (ITS)]; and group C (H-DMEM medium, 10%FBS, 10 ng/mL TGF-β1, 1 × 10-7mol/L dexamethasone, 50 μg/ mL vitamin C, 1%ITS, and 10%PL). The hUCMSCs were induced in the mediums for 2 weeks. Toluidine blue staining was used to detect the secretion of chondrocyte matrix. Immunofluorescence method was used to identify the existence of collagen trpe II. The expressions of Aggrecan and collagen type II were detected by semiquantitative RT-PCR. Results Flow cytometer results showed that the hUCMSCs did not express the surface markers of hematopoietic cell CD34, CD45, and human leukocyte antigen DR, but expressed the surface markers of adhesion molecule and mesenchymal stem cells CD44, CD105, and CD146. Toluidine blue staining and immunofluorescence showed positive results in group C, weak positive results in group B, and negative results in group A. Semiquantitative RT-PCR showed the expressions of Aggrecan and collagen type II at mRNA level in groups B and C, but no expression in group A. The mRNA expressions of Aggrecan and collagen type II were higher in group C than in group B (P lt; 0.05). Conclusion Only 10%PL can not induce differentiation of hUCMSCs into chondrocytes, but it can be a supplement to the induced mediums. PL can improve hUCMSCs differentiating into chondrocytes obviously in vitro. This study provides new available conditions for constructing tissue engineered cartilage.
Objective To investigate the ectopic bone formation of the chitosan/phosphonic chitosan sponge combined with human umbil ical cord mesenchymal stem cells (hUCMSCs) in vitro. Methods Phosphorous groups were introduced in chitosan molecules to prepare the phosphonic chitosan; 2% chitosan and phosphonic chitosan solutions were mixed at a volume ratio of 1 ∶ 1 and freeze-dried to build the complex sponge, and then was put in the simulated body fluid for biomimetic mineral ization in situ. The hUCMSCs were isolated by enzyme digestion method from human umbil ical cord and were cultured. The chitosan/phosphonic chitosan sponge was cultured with hUCMSCs at passage 3, and the cell-scaffoldcomposite was cultured in osteogenic medium. The growth and adhesion of the cells on the scaffolds were observed by l ight microscope and scanning electron microscope (SEM) at 1 and 2 weeks after culturing, respectively. The cell prol iferation was detected by MTT assay at 1, 2, 3, 4, 5, and 6 days, respectively. Bilateral back muscles defects were created on 40 New Zealand rabbits (3-4 months old, weighing 2.1-3.2 kg, male or female), which were divided into groups A, B, and C. In group A, cellscaffold composites were implanted into 40 right defects; in group B, the complex sponge was implanted into 20 left defects; and in group C, none was implanted into other 20 left defects. The gross and histological observations were made at 4 weeks postoperatively. Results The analysis results of phosphonic chitosan showed that the phosphorylation occurred mainly in the hydroxyl, and the proton type and chemical shifts intensity were conform to its chemical structure. The SEM results showed that the pores of the chitosan/phosphonic chitosan sponge were homogeneous, and the wall of the pore was thinner; the coating of calcium and phosphorus could be observed on the surface of the pore wall after mineral ized with crystal particles; the cells grew well on the surface of the chitosan/phosphonic chitosan sponge. The MTT assay showed that the chitosan/phosphonic chitosan sponge could not inhibit the prol iferation of hUCMSCs. The gross observation showed that the size and shape of the cell-scaffold composite remained intact and texture was toughened in group A, the size of the complex sponge gradually reducedin group B, and the muscle defects wound healed with a l ittle scar tissue in group C. The histological observation showed that part of the scaffold was absorbed and new blood vessels and new bone trabeculae formed in group A, the circular cavity and residual chitosan scaffolds were observed in group B, and the wound almost healed with a small amount of lymphocytes in group C. Conclusion The chitosan/phosphonic chitosan sponge has good biocompatibil ity, the tissue engineered bone by combining the hUCMSCs with chitosan/phosphonic chitosan sponge has the potential of the ectopic bone formation in rabbit.
Objective To construct the lentiviral vector to co-express enhanced green fluorescent protein (EGFP) gene and human insul in (insulin) gene, and to explore the condition to transfect human umbil ical cord mesenchymal stem cells (hUCMSCs) so as to lay a foundation for tissue engineered adipose reconstruction and transplantation in vivo infuture. Methods The insulin gene was cloned to lentiviral expression vector with EGFP [pLenti6.3-internal ribosome entrysite (IRES)-EGFP] by recombinant DNA technology, the positive clones were screened, and lentiviral packaged systems and target gene plasmid were co-transfected to package virus in 293T cells by lipofectin. The reporter gene expression was observed by fluorescent inverted phase contrast microscope, virus supernatant was collected, purificated and concentrated, and the titer of recombinant viruses was determinated. hUCMSCs from umbilical cord tissue of mature neonates were isolated and cultured by different multiple of infection (MOI, 0, 1, 3, 5, 7, 10, 15, and 20). By recombinant lentiviral infected hUCMSCs with reporter gene green fluorescent protein expression, the best MOI was screened; recombinant lentiviral infected hUCMSCs at the best MOI, then real-time PCR and Western blot methods were appl ied to detect insulin gene and insul in protein expression levels in cells. Results The recombinant lentiviral vector of co-expressing insulin gene and EGFP gene (pLenti6.3-insulin-IRESEGFP) was successfully constructed. Virus could be packaged, purificated and concentrated successfully. The virus titer was 1.3 × 108 TU/mL. The best MOI was 10 and the transfer efficiency was up to 90% in the same time. Real-time PCR results showed that insulin gene expression of transfected group was positive and non-transfected group was negative; Western blot detection confirmed that insul in protein expression of transfected group was positive in cells and supernatant, but that of non-transfected group was both negative. Conclusion Lentiviral vector pLenti6.3-insulin-IRES-EGFP carrying recombinant insulin gene could effectively transfect hUCMSCs and express insul in protein.
ObjectiveTo investigate the differentiation potential of human umbilical cord mesenchymal stem cells (HUCMSCs) into hepatocytes induced by rat fibrotic liver tissue extracts. MethodsLiver fibrosis was induced in the Sprague Dawley rats (weighting, 180-220 g) by repeated intraperitoneal injections of 3% thioacetamide-saline at a dose of 200 mg/kg twice a week for 4 weeks;fibrotic liver tissues were used to prepare liver homogenate supernatants. The HUCMSCs at passage 3 were cultured in DMEM/F12 with 10% fetal bovine serum (FBS) (control group) and in DMEM/F12 with 10%FBS and 50 g/L liver homogenate supernatants (experimental group) for 7 days. The morphological changes of the cells were recorded;the protein levels of cytokeratin 18 (CK18), alpha fetoprotein (AFP), and CYP3A4 were measured using Western blot. The glycogen storing ability of the cells was detected by periodic acid-schiff (PAS) staining. Furthermore, the synthesis of albumin (ALB) and blood urea nitrogen (BUN) was measured. ResultsIn experimental group, after 1 day of induction, the stem cells of fusiform shape began to lose sharp edges and progressively shrunk, and then they changed into hepatocyte-like cells with round and irregular shape at 7 days. Positive expressions of AFP, CK18, and CYP3A4 were observed in the experimental group, but negative expression in the control group. The concentrations of BUN and ALB were (0.43±0.07) mmol/L and (8.08±0.41) μg/mL in the control group and were (2.52±0.20) mmol/L and (41.48±4.11) μg/mL in the experimental group, showing significant differences (t=24.160, P=0.000;t=19.810, P=0.000). PAS staining results showed navy blue nucleus and lavender cytoplasm in the control group, but dark purple cell body and visible nucleus in the experimental group. ConclusionHUCMSCs could differentiate into hepatocyte-like cells induced by rat fibrotic liver tissue extracts, which have hepatocyte biomarkers (AFP, CK18, and CYP3A4) and hepatocyte-specific functions of glycogen storage, urea production and ALB secretion, so they could partially replace the function of hepatocytes, that may be one of the therapeutic mechanisms of stem cell transplantation.
Objective To investigate the protective effect of annexin A1 (ANXA1) derived from human umbilical cord mesenchymal stem cells (HucMSCs) on lipopolysaccharide (LPS) -induced acute lung injury (ALI). Methods Six-week-old male C57BL/6 mice were randomly divided into a sham group, a LPS group, a LPS+HucMSC-cm (LPS+cm) group, a LPS+nc-cm group, and a LPS+si-cm group, with 6 mice in each group. LPS (5 mg/kg) was intratracheally injected to induce ALI model. Then, normal saline, HucMSC-cm (HucMSC conditioned medium), HucMSC-nc-cm (normal ANXA1 expression) and HucMSC-si-cm (knockout of ANXA1) were injected intratracheally with 50 μL each after LPS treatment for 4 hours. After 72 hours of LPS administration, the mice were killed, and the blood and lung tissues were retained. After corresponding treatment, the blood and lung tissues were preserved. The expression of IL-6 in peripheral blood of mice was detected by enzyme-linked immunosorbnent assay, the pathological changes of lung tissues were observed by hematoxylin-eosin staining, and the expressions of interleukin-6 (IL-6) and vascular cell adhesion molecule-1 (VCAM-1) in lung tissues of each group were detected by Western blot and immunohistochemistry. Results Compared with the sham group, the lung histopathology of mice in the LPS group showed significantly increased inflammatory factor infiltration, alveolar collapse, and lung tissue structure destruction as well as lung tissue injury score and wet/dry weight ratio (W/D) increased (all P<0.05). Accordingly, IL-6 and VCAM-1 protein levels in lung tissue and IL-6 expression in peripheral blood were increased (all P<0.05). Compared with the LPS group, the pathological injury of lung tissue in the LPS+cm group was improved, the lung tissue injury score and the W/D ratio decreased while IL-6, VCAM-1 protein levels in lung tissue and IL-6 expression in peripheral blood were decreased (all P<0.05). But there were no significant differences between the LPS+cm group and the LPS+ nc-cm group (all P>0.05). Compared with the LPS+nc-cm group, lung tissue pathological injury was aggravated again, lung tissue injury score and W/D were also increased in the LPS+si-cm group (all P<0.05). IL-6 and VCAM-1 protein levels in lung tissue and IL-6 expression in peripheral blood were increased again (all P<0.05). Conclusion ANXA1 derived from HucMSCs has certain protective effect in LPS-induced ALI model.
ObjectiveTo explore the involvement of miR-126 and the role of mammalian target of rapamycin (mTOR)/hypoxia-induced factor 1 α (HIF-1 α) pathway in regulating human umbilical cord mesenchymal stem cells (hUCMSCs) exosomes (Exo) on vascular endothelial growth factor (VEGF)-A levels in high glucose-induced human retinal vascular endothelial cells (HRECs). MethodsThe hREC was cultured in EGM-2-MV endothelial cell culture medium with 30 mmol/L glucose and placed in hypoxic cell incubator by 1% oxygen concentration. The cell model of high glucose and low oxygen was established. After modeling, divided HRECs into Exo group, phosphate buffer saline (PBS) group, PBS+anti-miR126 group, Exo+anti-miR126 group, PBS+anti-mTOR group, and PBS+anti-HIF-1 α group. High-glucose and hypoxia-induced hREC in the PBS and Exo groups were respectively co-cultured with PBS and 100 μg/ml hUCMSC Exo. PBS+anti-mTOR group, PBS+anti-HIF-1 α group: 500 nmol/L mTOR inhibitor ADZ2014, 25 μmol/L HIF-1 α inhibitor YC-1 pretreatment for hREC 12 h, and then co-culture with PBS after High-glucose and hypoxia-induced. PBS+anti-miR126 group, Exo+anti-miR126 group: miR-126 LNA power inhibitor probe was transfected with high glucose, and co-cultured with PBS and hUCMSC Exo 6 h after transfection. Real-time polymerase chain reaction (qPCR) measured miRNA-126 expression levels in PBS, and Exo groups for 0, 8, 16 and 24 h. After 24 hof co-culture, the levels of mTOR and HIF-1 α in the cells of PBS and Exo groups were detected by immunofluorescence, Western blot and qPCR, respectively. Western blot, qPCR detection of VEGF-A expression levels in cells of the PBS+anti-mTOR and PBS+anti-HIF-1 α groups. The expression of VE GF-A, mTOR, and HIF-1 α mRNA was measured in cells of PBS+anti-miR126 group and Exo+anti-miR126 group by qPCR. Comparison between two groups was performed by t-test; one-way ANOVA was used for comparison between multiple groups. ResultsAt 0, 8, 16 and 24 h, the relative mRNA expression of miR-126 gradually increased in the Exo group (F=95.900, P<0.05). Compared with the PBS group, The mTOR, HIF-1 α protein (t=3.466, 6.804), mRNA in HRECs in the Exo group, VEGF-A mRNA expression (t=8.642, 7.897, 6.099) were all downregulated, the difference was statistically significant (P<0.05). The relative expression level of VEGF-Aprotein (t=3.337, 7.380) and mRNA (t=8.515, 10.400) was decreased in HRECs of the anti-mTOR+PBS group and anti-HIF-1 α+PBS group, differences were statistically significant (P<0.05). The relative expression of VEGF-A, mTOR, and HIF-1 α mRNA was significantly increased in the cells of the Exo+anti-miR126 group, the differences were all statistically significant (t=4.664, 6.136, 6.247; P<0.05). ConclusionsmiR-126 plays a role in regulating the effect of hUCMSCs exosomes on VEGF-A levels in high glucose-induced HRECs via mTOR-HIF-1 α pathway.
ObjectiveTo systematically review the efficacy of umbilical cord mesenchymal stem cells in the treatment of premature ovarian failure. MethodsCNKI, WanFang Data, SinoMed, PubMed and EMbase databases were electronically searched to collect animal experiments of the efficacy of umbilical cord mesenchymal stem cells in the treatment of premature ovarian failure from inception to September 17th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies; then, meta-analysis was performed by using RevMan 5.4.1 software. ResultsA total of 9 studies involving 302 mice were included. The results of meta-analysis showed that: umbilical cord mesenchymal stem cell transplantation could increase primal follicles (SMD=1.51, 95%CI 0.80 to 2.22, P<0.000 1), primary follicles (SMD=1.43, 95%CI 0.76 to 2.09, P<0.000 1), secondary follicles (SMD=1.39, 95%CI 0.78 to 2.01, P<0.000 01) and sinus follicles (SMD=1.15, 95%CI 0.49 to 1.82, P=0.000 7). It significantly increased the concentration of estradiol in rats with premature ovarian failure (SMD=2.38, 95%CI 1.75 to 3.01, P<0.000 01), and decreased serum follicle-stimulating hormone concentration (SMD=−1.98, 95%CI −2.80 to −1.17, P<0.000 01). ConclusionCurrent evidence shows that umbilical cord mesenchymal stem cell transplantation can repair ovarian tissue and improve ovarian endocrine function in mice. Due to limited quality and quantity of the included studies, more high-quality studies are needed to verify above conclusions.